Cambios en la microbiota intestinal de las aves y sus implicaciones prácticas

  • Rodrigo Medardo Abad-Guamán Carrera de Medicina Veterinaria y Zootecnia, Facultad Agropecuaria y de Recursos Naturales Renovables, Universidad Nacional de Loja, La Argelia EC 110150. Loja-Ecuador. http://orcid.org/0000-0002-2015-8548
  • Mirian Capa-Morocho Carrera de Ingeniería Agronómica, Facultad Agropecuaria y de Recursos Naturales Renovables, Universidad Nacional de Loja, La Argelia EC 110150. Loja-Ecuador.
  • Vanessa Herrera Yunga Carrera de Zootecnia, Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo
  • Rocio Herrera Herrera Carrera de Medicina Veterinaria, Unidad Académica de Agricultura, Silvi- cultura, Pesca y Veterinaria, Universidad Católica de Cuenca, Panamericana Norte y Crnel. Rremigio Machuca EC010108. Cuenca - Ecuador
  • Galo Escudero Sanchez Carrera de Medicina Veterinaria y Zootecnia, Facultad Agropecuaria y de Recursos Naturales Renovables, Universidad Nacional de Loja, La Argelia EC 110150. Loja-Ecuador.
Palabras clave: microbiota, salud intestinal, antibióticos, bioseguridad.

Resumen

El objetivo de esta revisión es ofrecer una visión general del estado actual del conocimiento sobre la dinámica temporal y espacial de la microbiota intestinal de las aves. Diversos cambios temporales en la microbiota intestinal ocurren desde la pre-eclosión hasta que el animal llega a ser adulto. Uno de los más importantes cambios ocurre inmediatamente tras el nacimiento, donde se genera la mayor colonización del tracto digestivo por bacterias ambientales. Por otra parte, los cambios espaciales se dan por las condiciones heterogéneas en las diferentes secciones del tracto digestivo. Mientras el tracto digestivo se encuentra más distal al pico, incrementa la diversidad y cantidad de microorganismos. Así, en los ciegos se encuentra la más estable y diversa microbiota intestinal; mientras que la microbiota del intestino delgado predominantemente está compuesta por Lactobacilus que son más fácilmente influenciables por las dietas. Por lo tanto, para evitar que bacterias patógenas colonicen el tracto digestivo y potenciar el establecimiento de una microbiota beneficiosa es necesario centrar la bioseguridad y uso de aditivos (como probióticos y prebióticos) en el nacimiento y recibimiento del pollito. Esto podría ayudar a maximizar los índices productivos y reducir los problemas sanitarios en granja, con la consecuente reducción del uso de antibióticos.

Citas

Barnes, E.M., Mead, G.C., Barnuml, D.A., y Harry, E.G. (1972). The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British poultry science, 13(3), 311-326.

Bjerrum, L., Engberg, R.M., Leser, T.D., Jensen, B.B., Finster, K., y Pedersen, K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science, 85(7), 1151-1164.

Bringel, F. y Hubert, J.C. (2003). Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus, and L. casei: prevalence of CO(2)-dependent auxotrophs and characterization of de cient arg genes in L. plantarum. Applied and Environmental Microbiology 69: 2674-2683.

Cason, J.A., Cox, N.A. y Bailey, J.S. (1994). Transmission of Salmonella typhimurium during hatching of broiler chicks. Avian Diseases 38: 583-588.

Clench, M.H. y Mathias, J.R. (1992). A complex avian intestinal motility response to fasting. American Journal of Physiology 262: G498-504.

Collado, M.C. y Sanz, Y. (2007). Characterization of the gastrointestinal mucosa-associated microbiota of pigs and chickens using culture-based and molecular methodologies. Journal of Food Protection 70: 2799-2804.

Conway, P.L. (1994). Function and regulation of the gastrointestinal microbiota of the pig. In: Souffrant, W.B., Hagemeister, H. (Eds.), Proceedings of the VIth International Symposium on Digestive Physiology in Pigs. EAAP Publication no. 80, Dummerstof, pp. 231–240.

Cook, N. (2003). The use of NASBA for the detection of microbial pathogens in food and environmental samples. Journal of Microbiological Methods 53: 165-174.

Cox, N.A., Bailey, J.S., Mauldin, J.M., Blankenship, L.C. y Wilson, J.L., 1991. Extent of salmonellae contamination in breeder hatcheries. Poultry Science 70: 416-418.

Cressman, M.D., Yu, Z., Nelson, M.C., Moeller, S.J., Lilburn, M.S. y Zerby, H.N. (2010). Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Applied and Environmental Microbiology 76: 6572-6582.

Czerwinski, J., Hojberg, O., Smulikowska, S., Engberg, R.M. y Mieczkowska, A. (2012). Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Archives of Animal Nutrition 66: 102-116.

Doyle, M.P. y Erickson, M.C. (2006). Reducing the carriage of foodborne pathogens in livestock and poultry. Poultry Science 85: 960-973.

Dumonceaux, T.J., Hill, J.E., Hemmingsen, S.M. y Van Kessel, A.G. (2006). Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Applied and Environmental Microbiology 72: 2815-2823.

Edelman, S.M., Lehti, T.A., Kainulainen, V., Antikainen, J., Kylvaja, R., Baumann, M., Westerlund-Wikstrom, B. y Korhonen, T.K. (2012). Identification of a high-molecular- mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to strati ed squamous epithelium. Microbiology 158: 1713-1722.

Edwards, J. E., McEwan, N. R., Travis, A. J., y Wallace, R. J. (2004). 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek, 86(3), 263-281.

Ganewatta, M. S., Rahman, M. A., y Tang, C. (2017). Emerging Antimicrobial Research against Superbugs: Perspectives from a Polymer Laboratory. Journal of the South Carolina Academy of Science, 15(1), 3.

Gast, R.K. y Holt, P.S. (2000). Influence of the level and location of contamination on the multiplication of Salmonella enteritidis at different storage temperatures in experimentally inoculated eggs. Poultry Science 79: 559-563.

Gong, J., Forster, R. J., Yu, H., Chambers, J. R., Wheatcroft, R., Sabour, P. M., y Chen, S. (2002). Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiology Ecology, 41(3), 171-179.

Gong, J., Si, W., Forster, R.J., Huang, R., Yu, H., Yin, Y., Yang, C. y Han, Y. (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology 59: 147-157.

Gong, J., Yu, H., Liu, T., Gill, J.J., Chambers, J.R., Wheatcro , R. y Sabour, P.M. (2008). Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. Journal of Applied Microbiology 104: 1372-1382.

Hammons, S., Oh, P.L., Martinez, I., Clark, K., Schlegel, V.L., Sitorius, E., Scheideler, S.E. y Walter, J. (2010). A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Systematic and Applied Microbiology 33: 275-281.

Hughes, R. J. (2008). Relationship between digesta transit time and apparent metabolisable energy value of wheat in chickens. British poultry science, 49(6), 716-720.

Janczyk, P., Halle, B. y Sou rant, W.B. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poultry Science 88: 2324-2332.

Kapczynski, D.R., Meinersmann, R.J. y Lee, M.D. (2000). Adherence of Lactobacillus to intestinal 407 cells in culture correlates with bronectin binding. Current Microbiology 41: 136-141.

Kim, M., Morrison, M., y Yu, Z. (2011). Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments. Folia microbiologica, 56(5), 453.

Lakhan, S.E. y Kirchgessner, A. (2010). Gut inflammation in chronic fatigue syndrome. Nutrition & Metabolism 7: 79.

Lin, J., Hunkapiller, A.A., Layton, A.C., Chang, Y.J. y Robbins, K.R. (2013). Response of intestinal microbiota to antibiotic growth promoters in chickens. Foodborne Pathogens and Disease 10: 331-337.

Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J.J. y Lee, M.D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology 69: 6816-6824.

Lu, J., y Santo Domingo, J. (2008). Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences. The Journal of Microbiology, 46(5), 469-477.

Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J.J. y Lee, M.D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology 69: 6816-6824.

Lumpkins, B.S., Batal, A.B. y Lee, M.D. (2010). Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poultry Science 89: 1614-1621.

Maurer, J.J., Hofacre, C.L., Wooley, R.E., Gibbs, P. y Froyman, R. (2002). Virulence factors associated with Escherichia coli present in a commercially produced competitive exclusion product. Avian Diseases 46: 704-707.

Methner, U., Al‐Shabibi, S., y Meyer, H. (1995). Infection model for hatching chicks infected with Salmonella Enteritidis. Zoonoses and Public Health, 42(1‐10), 471-480.

Nakphaichit, M., anomwongwattana, S., Phraephaisarn, C., Sakamoto, N., Keawsompong, S., Nakayama, J. y Nitisinprasert, S. (2011). The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poultry Science 90: 2753-2765.

Nurmi, E., Nuotio, L. y Schneitz, C. (1992). The competitive exclusion concept: development and future. International Journal of Food Microbiology 15: 237-240.

Okamura, M., Tachizaki, H., Kubo, T., Kikuchi, S., Suzuki, A., Takehara, K. y Nakamura, M. (2007). Comparative evaluation of a bivalent killed Salmonella vaccine to prevent egg contamination with Salmonella enterica serovars Enteritidis, Typhimurium, and Gallinarum biovar Pullorum, using 4 different challenge models. Vaccine 25: 4837-4844.

Pan, D., y Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut microbes, 5(1), 108-119.

Pedroso, A.A., Menten, J.F.M. y Lambais, M.R. (2005). The structure of bacterial community in the intestines of newly hatched chicks. Journal of Applied Poultry Research 14: 232-237.

Pedroso, A.A., Menten, J.F.M., Lambais, M.R., Racanicci, A.M.C., Longo, F.A. y Sorbara, J.O.B. (2006). Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics. Poultry Science 85: 747-752.

Pedroso, A.A., Maurer, J.J., Dlugolenski, D. and Lee, M.D. (2008). Embryonic chicks may possess an intestinal bacterial community within the egg, American Society for Microbiology General Meeting, Toronto, Canada.

Pedroso, A. A., Maurer, J., Cheng, Y., y Lee, M. D. (2012). Informal Nutrition Symposium Remodeling the intestinal ecosystem toward better performance and intestinal health. Journal of Applied Poultry Research, 21(2), 432-443.

Pissavin, C., Burel, C., Gabriel, I., Beven, V., Mallet, S., Maurice, R., Queguiner, M., Lessire, M. y Fravalo, P. (2012). Capillary electrophoresis single-strand conformation polymorphism for the monitoring of gastrointestinal microbiota of chicken flocks. Poultry Science 91: 2294-2304.

Qu, A., Brulc, J.M., Wilson, M.K., Law, B.F., Theoret, J.R., Joens, L. A., ... y Nelson, K. E. (2008). Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PloS one, 3(8), e2945.

Salanitro, J.P., Fairchilds, I.G., y Zgornicki, Y.D. (1974). Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Applied microbiology, 27(4), 678-687.

Scupham, A.J. (2007)a. Succession in the intestinal microbiota of preadolescent turkeys. FEMS microbiology ecology, 60(1), 136-147.

Scupham, A.J., Jones, J.A., y Wesley, I.V. (2007)b. Comparison of DNA extraction methods for analysis of turkey cecal microbiota. Journal of applied microbiology, 102(2), 401-409.

Scupham, A.J., Patton, T.G., Bent, E., y Bayles, D.O. (2008). Comparison of the cecal microbiota of domestic and wild turkeys. Microbial Ecology, 56(2), 322-331.

Singh, K.M., Shah, T.M., Reddy, B., Deshpande, S., Rank, D.N., y Joshi, C.G. (2013). Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. Journal of applied genetics, 55(1), 145-154.

Salanitro, J.P., Blake, I.G., Muirehead, P.A., Maglio, M. y Goodman, J.R. (1978). Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Applied and Environmental Microbiology 35: 782-790.

Savory, C.J. (1999). Temporal control of feeding behaviour and its association with gastrointestinal function. Journal of Experimental Zoology 283: 339-347.

Sekelja, M., Rud, I., Knutsen, S.H., Denstadli, V., Westereng, B., Naes, T. y Rudi, K. (2012). Abrupt temporal uctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Applied and Environmental Microbiology 78: 2941-2948.

Sun, H., Tang, J.W., Fang, C.L., Yao, X.H., Wu, Y.F., Wang, X. y Feng, J. (2013). Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cottonseed meal. Poultry Science 92: 392-401.

Stanley, D., Denman, S.E., Hughes, R.J., Geier, M.S., Crowley, T.M., Chen, H., Haring, V.R. and Moore, R.J. (2012). Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied Microbiology and Biotechnology 96: 1361-1369.

Wagner, R.D. (2006). Efficacy and food safety considerations of poultry competitive exclusion products. Molecular Nutrition & Food Research 50: 1061-1071.

Videnska, P., Faldynova, M., Juricova, H., Babak, V., Sisak, F., Havlickova, H., y Rychlik, I. (2013). Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC veterinary research, 9(1), 30.

Xu, J., y Gordon, J. I. (2003). Honor thy symbionts. Proceedings of the National Academy of Sciences, 100(18), 10452-10459.

Yan, F. y Polk, D.B. (2004). Commensal bacteria in the gut: learning who our friends are. Current Opinion in Gastroenterology 20: 565-571.

Yin, Y., Lei, F., Zhu, L., Li, S., Wu, Z., Zhang, R., Gao, G.F., Zhu, B. y Wang, X. (2010). Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. The ISME journal, 4(3), 367-376

Zhao, X., Guo, Y., Guo, S. y Tan, J. (2013). Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Applied and Environmental Microbiology 97(14): 6477-6488.

Zhu, X.Y., Zhong, T., Pandya, Y. y Joerger, R.D. (2002). 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology 68: 124-137.

Zhu, X.Y., y Joerger, R.D. (2003). Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poultry science, 82(8), 1242-1249.

Publicado
2018-02-01
Sección
ARTÍCULOS DE REVISIÓN