CARACTERÍSTICAS Y FUNCIONAMIENTO RESPECTO A LOS MODELOS BERT Y SQUAD CARRIÓN
https://doi.org/10.1093/jamiaopen/ooaa022
Chintalapudi, N., Battineni, G., Amenta, F. (2021).
Sentimental analysis of COVID-19 tweets using deep
learning models. Infectious Disease Reports, 13(2).
https://doi.org/10.3390/IDR13020032
Devlin, J., Chang, M. W., Lee, K., Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for language
understanding. NAACL HLT 2019 - 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Techno-
logies - Proceedings of the Conference, 1, 4171–4186.
https://github.com/tensorflow/tensor2tensor
El-Geish, M. (2020). Gestalt: a Stacking Ensemble for
SQuAD2.0. http://arxiv.org/abs/2004.07067
Gao, Z., Feng, A., Song, X., Wu, X. (2019).
Target-dependent sentiment classification with
BERT. IEEE Access, 7, 154290–154299.
https://doi.org/10.1109/ACCESS.2019.2946594
Hulburd, E. (2020). Exploring BERT Parameter Effi-
ciency on the Stanford Question Answering Dataset v2.0.
http://arxiv.org/abs/2002.10670
Kitchenham, B., Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering.
Liu, H., Perl, Y., Geller, J. (2019). Transfer Learning from
BERT to Support Insertion of New Concepts into SNOMED
CT. AMIA ... Annual Symposium Proceedings. AMIA
Symposium, 2019, 1129–1138.
Maghraoui, K. El, Herger, L. M., Choudary, C., Tran, K.,
Deshane, T., Hanson, D. (2021). Performance Analysis
of Deep Learning Workloads on a Composable System. 1,
1–10. http://arxiv.org/abs/2103.10911
Özçift, A., Akarsu, K., Yumuk, F., Söylemez, C. (2021).
Advancing natural language processing (NLP) appli-
cations of morphologically rich languages with bidi-
rectional encoder representations from transformers
(BERT): an empirical case study for Turkish. Automatika.
https://doi.org/10.1080/00051144.2021.1922150
Petticrew, M., Roberts, H. (2008). Systematic Reviews
in the Social Sciences: A Practical Guide. In Systematic
Reviews in the Social Sciences: A Practical Guide. Black-
well Publishing Ltd. https://doi.org/10.1002/9780470754887
Rajpurkar, P., Jia, R., Liang, P. (2018). Know what you
don’t know: Unanswerable questions for SQuAD. ArXiv
Preprint ArXiv:1806.03822.
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P. (2016).
SQuad: 100,000+ questions for machine comprehension
of text. EMNLP 2016 - Conference on Empirical Methods
in Natural Language Processing, Proceedings, 2383–2392.
https://doi.org/10.18653/v1/d16-1264
Su, L., Guo, J., Fan, Y., Lan, Y., Cheng, X. Controlling Risk
of Web Question Answering. SIGIR 2019 - Proceedings
of the 42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 115–124.
https://doi.org/10.1145/3331184.3331261
Su, M. H., Wu, C. H., Cheng, H. T. (2020). A Two-
Stage Transformer-Based Approach for Variable-Length
Abstractive Summarization. IEEE/ACM Transactions on
Audio Speech and Language Processing, 28, 2061–2072.
https://doi.org/10.1109/TASLP.2020.3006731
Vinod, P., Safar, S., Mathew, D., Venugopal, P., Joly, L. M.,
George, J. (2020, June 1). Fine-tuning the BERTSUMEXT
model for clinical report summarization. 2020 Internatio-
nal Conference for Emerging Technology, INCET 2020.
https://doi.org/10.1109/INCET49848.2020.9154087
Yang, X., Zhang, H., He, X., Bian, J., Wu, Y. (2020).
Extracting family history of patients from clinical na-
rratives: Exploring an end-to-end solution with deep
learning models. JMIR Medical Informatics, 8(12).
https://doi.org/10.2196/22982
Zadeh, A. H., Edo, I., Awad, O. M., Moshovos, A.
(2020). GOBO: Quantizing attention-based nlp mo-
dels for low latency and energy efficient inference.
Proceedings of the Annual International Symposium
on Microarchitecture, MICRO, 2020-Octob, 811–824.
https://doi.org/10.1109/MICRO50266.2020.00071
Zeng, K., Pan, Z., Xu, Y., Qu, Y. (2020). An ensemble
learning strategy for eligibility criteria text classifica-
tion for clinical trial recruitment: Algorithm develop-
ment and validation. JMIR Medical Informatics, 8(7).
https://doi.org/10.2196/17832
Zhou, Y., Yang, Y., Liu, H., Liu, X., Savage, N.
(2020). Deep Learning Based Fusion Approach for Ha-
te Speech Detection. IEEE Access, 8, 128923–128929.
https://doi.org/10.1109/ACCESS.2020.3009244
86