e-ISSN: 1390-5902
CEDAMAZ, Vol. 11, No. 02, pp. 142–151, julio–diciembre 2021
DOI: 10.54753/cedamaz.v11i2.1183
Based Golden Ratio Optimizer. Diagnostics, 11(2), 315.
https://doi.org/10.3390/diagnostics11020315
Dass, S D S, Meskaran, F., y Saeedi, M. (2020). Ex-
pert system for early diagnosis of covid-19. International
Journal of Current Research and Review, 12(22), 162–165.
https://doi.org/10.31782/IJCRR.2020.122227
Dass, Sharana Dharshikgan Suresh, Meskaran,
F., y Saeedi, M. (2020). Expert system for early
diagnosis of covid-19. International Journal of
Current Research and Review, 12(22), 162–165.
https://doi.org/10.31782/IJCRR.2020.122227
de Freitas Barbosa, V. A., Gomes, J. C., de Santana, M. A.,
Albuquerque, J. E. A., de Souza, R. G., de Souza, R. E., dos
Santos, W. P. (2021). Heg.IA: an intelligent system to sup-
port diagnosis of Covid-19 based on blood tests. Research
on Biomedical Engineering. https://doi.org/10.1007/s42600-
020-00112-5
El-bana, S., Al-Kabbany, A., y Sharkas, M. (2020).
A multi-task pipeline with specialized streams for clas-
sification and segmentation of infection manifestations
in COVID-19 scans. PeerJ Computer Science, 6, e303.
https://doi.org/10.7717/peerj-cs.303
Elzeki, O. M., Abd Elfattah, M., Salem, H., Hassa-
nien, A. E., Shams, M. (2021). A novel perceptual two
layer image fusion using deep learning for imbalanced
COVID-19 dataset. PeerJ Computer Science, 7, e364.
https://doi.org/10.7717/peerj-cs.364
Gao, T. (2020). Chest X-ray image analysis
and classification for COVID-19 pneumonia de-
tection using deep CNN. In medRxiv. medRxiv.
https://doi.org/10.1101/2020.08.20.20178913 Gazzah,
S., Bencharef, O., Marrakech, F. (2020). A Survey on how
computer vision can response to urgent need to contribute in
COVID-19 pandemics.
Gisby, J., Clarke, C. L., Medjeral-Thomas, N., Malik, T.
H., Papadaki, A., Mortimer, P. M., Buang, N. B., Lewis,
S., Pereira, M., Toulza, F., Fagnano, E., Mawhin, M. A.,
Dutton, E. E., Tapeng, L., Kirk, P., Behmoaras, J., Sandhu,
E., McAdoo, S. P., Prendecki, M. F., . . . Peters, J. E. (2020).
Longitudinal proteomic profiling of high-risk patients with
COVID-19 reveals markers of severity and predictors of
fatal disease. In medRxiv (Vol. 16, Issue 2, p. e0247176).
medRxiv. https://doi.org/10.1101/2020.11.05.20223289’
Google-Noticias. (2021). Coronavirus (COVID-19).
Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z.,
Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., Spada, L.
L., Mirmozafari, M., Dehghani, M., Sabet, A., Rosha-
ni, S., Roshani, S., Bayat-Makou, N., Mohamadzade,
B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki,
H., y Mohyuddin, W. (2020). Artificial Intelligence and
COVID-19: Deep Learning Approaches for Diagno-
sis and Treatment. IEEE Access, 8, 109581–109595.
https://doi.org/10.1109/ACCESS.2020.3001973
Javor, D., Kaplan, H., Kaplan, A., Puchner, S. B.,
Krestan, C., y Baltzer, P. (2020). Deep learning analysis
provides accurate COVID-19 diagnosis on chest com-
puted tomography. European Journal of Radiology, 133.
https://doi.org/10.1016/j.ejrad.2020.109402
Kamil, M. Y. (2021). A deep learning framework to detect
Covid-19 disease via chest X-ray and CT scan images. In-
ternational Journal of Electrical and Computer Engineering,
11(1), 844–850. https://doi.org/10.11591/ijece.v11i1.pp844-
850
Kang, H., Xia, L., Yan, F., Wan, Z., Shi, F., Yuan, H.,
Jiang, H., Wu, D., Sui, H., Zhang, C., y Shen, D. (2020).
Diagnosis of Coronavirus Disease 2019 (COVID-19) with
Structured Latent Multi-View Representation Learning.
IEEE Transactions on Medical Imaging, 39(8), 2606–2614.
https://doi.org/10.1109/TMI.2020.2992546
Kavitha, K. V, Deshpande, S. R., Pandit, A. P., y Unni-
krishnan, A. G. (2020). Application of tele-podiatry in diabe-
tic foot management: A series of illustrative cases. Diabetes
and Metabolic Syndrome: Clinical Research and Reviews,
14(6), 1991–1995. https://doi.org/10.1016/j.dsx.2020.10.009
Kitchenham, B., y Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering.
Kutlu, Y., y Cangozlu, Y. (2021). Detection of coronavirus
disease (COVID-19) from X-ray images using deep convo-
lutional neural networks. Natural and Engineering Sciences,
6(1), 60–74. https://doi.org/10.28978/nesciences.868087
Li, M. D., Little, B. P., Alkasab, T. K., Mendoza,
D. P., Succi, M. D., Shepard, J.-A. O., Lev, M. H., y
Kalpathy-Cramer, J. (2021). Multi-Radiologist User Study
for Artificial Intelligence-Guided Grading of COVID-19
Lung Disease Severity on Chest Radiographs. Academic
Radiology. https://doi.org/10.1016/j.acra.2021.01.016
Li, W. T., Ma, J., Shende, N., Castaneda, G., Chakladar,
J., Tsai, J. C., Apostol, L., Honda, C. O., Xu, J., Wong,
L. M., Zhang, T., Lee, A., Gnanasekar, A., Honda, T. K.,
Kuo, S. Z., Yu, M. A., Chang, E. Y., Rajasekaran, M. R.,
y Ongkeko, W. M. (2020). Using machine learning of
clinical data to diagnose COVID-19: A systematic review
and meta-analysis. BMC Medical Informatics and Decision
Making, 20(1). https://doi.org/10.1186/s12911-020-01266-z
Maghded, H. S., Ghafoor, K. Z., Sadiq, A. S., Curran,
K., Rawat, D. B., y Rabie, K. (2020). A Novel AI-enabled
Framework to Diagnose Coronavirus COVID-19 using
Smartphone Embedded Sensors: Design Study. Proceedings
- 2020 IEEE 21st International Conference on Information
Reuse and Integration for Data Science, IRI 2020, 180–187.
https://doi.org/10.1109/IRI49571.2020.00033
Meng, L., Dong, D., Li, L., Niu, M., Bai, Y., Wang,
150