MODELO DE PROGRAMACIÓN LINEAL DE OPERACIÓN Y MULTIÁREA CHUNCHO-MOROCHO et al.
por el espacio brindado para la elaboración de este documen-
to.
CONTRIBUCIONES DE LOS AUTORES
Conceptualización: JCM y RCR; metodología: JCM; aná-
lisis formal: JCM, RCR y FRC.; investigación: JCM, RCR y
FRC; recursos: JCM; curación de datos: JCM, RCR y FRC;
redacción — preparación del borrador original: JCM, RCR y
FRC; redacción — revisión y edición: JCM, RCR y FRC; vi-
sualización: JCM; supervisión: JCM; administración de pro-
yecto: JCM. Todos los autores han leído y aceptado la versión
publicada del manuscrito.
Juan Chuncho-Morocho: JCM.Raúl Chavez-Romero:
RCR. Fernando Ramírez Cabrera: FRC.
FINANCIAMIENTO
El presente trabajo no contó con ninguna fuente de finan-
ciamiento formal.
REFERENCIAS
Ackermann, T., Andersson, G., y Söder, L. (2001). Distri-
buted generation: a definition. Electric power systems
research,57(3), 195–204.
Aliari, Y., y Haghani, A. (2016). Planning for integration of
wind power capacity in power generation using stochas-
tic optimization. Renewable and Sustainable Energy
Reviews,59, 907–919.
Arboleya, P., Diaz, G., y Coto, M. (2012). Unified ac/dc po-
wer flow for traction systems: A new concept. IEEE
Transactions on vehicular technology,61(6), 2421–
2430.
ari kahan. (2020). International energy outlook 2021
(ieo2021) (Inf. Téc.). www.eia.gov.
Bitaraf, H., y Rahman, S. (2017). Reducing curtailed wind
energy through energy storage and demand response.
IEEE Transactions on Sustainable Energy,9(1), 228–
236.
Cassola, F., Burlando, M., Antonelli, M., y Ratto, C. F.
(2008). Optimization of the regional spatial distribu-
tion of wind power plants to minimize the variability
of wind energy input into power supply systems. Jour-
nal of Applied Meteorology and Climatology,47(12),
3099–3116.
Chen, P., Siano, P., Bak-Jensen, B., y Chen, Z. (2010). Sto-
chastic optimization of wind turbine power factor using
stochastic model of wind power. IEEE transactions on
Sustainable Energy,1(1), 19–29.
Chowdhury, M. M., Haque, M. E., Aktarujjaman, M., Neg-
nevitsky, M., y Gargoom, A. (2011). Grid integration
impacts and energy storage systems for wind energy ap-
plications—a review. En 2011 ieee power and energy
society general meeting (pp. 1–8).
Cui, X., y Yan, Y. (2012). Economic dispatching pro-
blem with group and resource considerations. En 2012
24th chinese control and decision conference (ccdc)
(pp. 4114–4117).
Goldemberg, J. (2012). The case for renewable energies. En
Renewable energy (pp. 31–42). Routledge.
Hetzer, J., David, C. Y., y Bhattarai, K. (2008). An eco-
nomic dispatch model incorporating wind power. IEEE
Transactions on energy conversion,23(2), 603–611.
Ibitoye, F. I., y Adenikinju, A. (2007). Future demand for
electricity in nigeria. Applied Energy,84(5), 492–504.
Jordehi, A. R., Tabar, V. S., y Jirdehi, M. A. (2022). A two-
stage stochastic model for security-constrained mar-
ket clearing with wind power plants, storage systems
and elastic demands. Journal of Energy Storage,51,
104550.
Joskow, P. L. (2020). Transmission capacity expansion is
needed to decarbonize the electricity sector efficiently.
Joule,4(1), 1–3.
Larrahondo, D., Moreno, R., Chamorro, H. R., y Gonzalez-
Longatt, F. (2021). Comparative performance of multi-
period acopf and multi-period dcopf under high integra-
tion of wind power. Energies,14(15), 4540.
Liu, L., Wang, Z., Wang, Y., Wang, J., Chang, R., He, G.,
. . . others (2020). Optimizing wind/solar combinations
at finer scales to mitigate renewable energy variability
in china. Renewable and Sustainable Energy Reviews,
132, 110151.
Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., y Jen-
kins, N. (2007). Integrating distributed generation in-
to electric power systems: A review of drivers, challen-
ges and opportunities. Electric power systems research,
77(9), 1189–1203.
Lorente de la Rubia, J. (2011). Estudio sobre el estado actual
de las"smart grids" (B.S. thesis).
Loukatou, A., Howell, S., Johnson, P., y Duck, P. (2018). Sto-
chastic wind speed modelling for estimation of expected
wind power output. Applied energy,228, 1328–1340.
Maheshwari, N., Chandrasekaran, M., y Babu, R. D. (2013).
Optimization of electrical power using solar and wind
energy systems. En 2013 7th international conference
on intelligent systems and control (isco) (pp. 172–175).
Pappala, V. S., Erlich, I., Rohrig, K., y Dobschinski, J.
(2009). A stochastic model for the optimal operation
of a wind-thermal power system. IEEE transactions on
Power Systems,24(2), 940–950.
Romero, S. R., Santos, A. C., y Gil, M. A. C. (2012). Eu
plans for renewable energy. an application to the spanish
case. Renewable Energy,43, 322–330.
Sharpley, R. (2000). Tourism and sustainable development:
Exploring the theoretical divide. Journal of Sustainable
tourism,8(1), 1–19.
Soroudi, A. (2017). Power system optimization modeling in
gams (Vol. 78). Springer.
Sovacool, B. K. (2009). The intermittency of wind, solar,
and renewable electricity generators: Technical barrier
or rhetorical excuse? Utilities Policy,17(3-4), 288–296.
Suberu, M. Y., Mustafa, M. W., y Bashir, N. (2014). Energy
storage systems for renewable energy power sector inte-
gration and mitigation of intermittency. Renewable and
Sustainable Energy Reviews,35, 499–514.
Sun, D., Li, X., Yang, S., Zhao, L., Wang, Y., Yang, B., . . .
Sun, Y. (2020). Integrated generation-grid-load eco-
nomic dispatch considering demand response. En 2020
ieee/ias industrial and commercial power system asia
(i&cps asia) (pp. 375–379).
Svoboda, A. J., Tseng, C.-L., Li, C.-a., y Johnson, R. B.
(1997). Short-term resource scheduling with ramp cons-
traints [power generation scheduling]. IEEE Transac-
tions on Power Systems,12(1), 77–83.
Trodden, P. A., Bukhsh, W. A., Grothey, A., y McKinnon,
K. I. (2013). Optimization-based islanding of power
networks using piecewise linear ac power flow. IEEE
Transactions on Power Systems,29(3), 1212–1220.
188