e-ISSN: 1390-5902
CEDAMAZ, Vol. 13, No. 2, pp. 140–147, Julio–Diciembre 2023
DOI: 10.54753/cedamaz.v13i2.2053
matic indices on the NDVI of different vegetation types
in Southwest China. Ecological Indicators, 154, 110499.
https://doi.org/10.1016/j.ecolind.2023.110499
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F.,
Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J.
O., Austin, M. P., Collins, C. D., Cook, W. M., Dams-
chen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N.,
King, A. J., Laurance, W. F., Levey, D. J., Margules,
C. R., . . . Townshend, J. R. (2015). Habitat fragmenta-
tion and its lasting impact on Earth’s ecosystems. Science
Advances,1(2). https://doi .org/10 .1126/sciadv
.1500052
Haro-Carrión, X., Waylen, P. R., & Southworth, J. (2020).
Spatiotemporal changes in vegetation Greenness across
Continental Ecuador: A Pacific-Andean-Amazonian Gra-
dient, 1982–2010. Journal of Land Use Science,16(1),
18-33. https://doi .org/10 .1080/1747423x .2020
.1866705
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferrei-
ra LG (2002) Overview of the radiometric and biophysi-
cal performance of the MODIS vegetation index. Remote
Sens Environ 83: 195-213
Huete, A., Didan, K., van Leeuwen, W., Miura, T., Glenn, E.
(2010). MODIS Vegetation Indices. In: Ramachandran,
B., Justice, C., Abrams, M. (eds) Land Remote Sensing
and Global Environmental Change. Remote Sensing and
Digital Image Processing, vol 11. Springer, New York,
NY. https://doi.org/10.1007/978-1-4419-6749-7
_26
Hurteau, M. D. (2021). The role of forests in the carbon
cycle and in climate change. En Climate Change (pp.
561–579). Elsevier. https://doi.org/10.1016/B978
-0-12-821575-3.00027-X
Jeong, S.-J., Schimel, D., Frankenberg, C., Drewry, D. T.,
Fisher, J. B., Verma, M., Berry, J. A., Lee, J.-E., &
Joiner, J. (2017). Application of satellite solar-induced
chlorophyll fluorescence to understanding large-scale
variations in vegetation phenology and function over
northern high latitude forests. Remote Sensing of Envi-
ronment,190, 178–187. https://doi.org/10.1016/
j.rse.2016.11.021
Jiang Z, Huete AR, Chen J, Chen Y, Li J, Yan G, Zhang X
(2006) Analysis of NDVI and scaled difference vegeta-
tion index retrievals of vegetation fraction. Remote Sens
Environ 101:366–378
Karger, D. N., Schmatz, D. R., Dettling, G., & Zimmermann,
N. E. (2020). High-resolution monthly precipitation and
temperature time series from 2006 to 2100. Scientific
Data,7(1). https://doi.org/10.1038/s41597-020
-00587-y
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann,
N. E., & Jetz, W. (2021). Global daily 1 km land surfa-
ce precipitation based on cloud cover-informed downsca-
ling. Scientific Data,8(1). https://doi.org/10.1038/
s41597-021-01084-6
Kleemann, J., Zamora, C., Villacis-Chiluisa, A. B., Cuenca,
P., Koo, H., Noh, J. K., Fürst, C., & Thiel, M. (2022).
Deforestation in continental Ecuador with a focus on
protected areas. Land,11(2), 268. https://doi .org/
10.3390/land11020268
Kumar, V., Bharti, B., Prasad, H., & Raj, A. (2023).
Assessing the interrelation between NDVI and clima-
te dependent variables by using granger causality test
and vector auto-regressive neural network model. Phy-
sics and Chemistry of the Earth, 131(May), 103428.
https://doi.org/10.1016/j.pce.2023.103428
Li, S., Li, X., Gong, J., Dang, D., Dou, H., & Lyu, X.
(2022). Quantitative Analysis of Natural and Anthropo-
genic Factors Influencing Vegetation NDVI Changes in
Temperate Drylands from a Spatial Stratified Heteroge-
neity Perspective: A Case. Remote Sensing, 14(3320), 1–
23. https://doi.org/https://doi.org/10.3390/ rs14143320
Liu, C., Liu, J., Zhang, Q., Hui, C., Gu, X., & Gulakh-
madov, A. (2022). Attribution of NDVI dynamics over
the globe from 1982 to 2015. Remote Sensing,14(11),
2706. https://doi.org/10.3390/rs14112706
MAATE. (2023). Plan Regulatorio Institucional 2024, Pro-
puesto. Ministerio del Ambiente, Agua y Transición Eco-
lógica (MAATE). Quito, Ecuador.
Maestre F., Gallardo A. (2008). Introducción de Análisis Es-
pacial de Datos en Ecología y Ciencias Ambientales: Mé-
todos y Aplicaciones. Editorial DYKINSON, S.L.
Maita, J. (2015). Dinámica espacio temporal del Índice de
vegetación Mejorado (EVI) en los Ecosistemas del Sur
del Ecuador [Tesis de Maestría, Universidad del Azuay].
Dspace de la Universidad del Azuay. http://dspace
.uazuay.edu.ec/handle/datos/4933
Ministerio del Ambiente del Ecuador. (2008). PROYEC-
TO SOCIO BOSQUE. Acuerdo Ministerial 169. Quito,
Ecuador.
Ministerio del Ambiente del Ecuador. (2013). Sistema de
Clasificación de Ecosistemas del Ecuador Continental.
Subsecretaría de Patrimonio Natural, Quito.
Ministerio del Ambiente del Ecuador. (2018). ESTADÍSTI-
CAS DEL PATRIMONIO NATURAL DEL ECUADOR
CONTINENTAL. Subsecretaría de Patrimonio Natural,
Quito.
National Aeronautics and Space Administration's Earth
Science Data Systems (ESDS) Program (https ://
search.earthdata.nasa.gov/search).
Noh, J. K., Echeverria, C., Gaona, G., Kleemann, J., Koo, H.,
Fürst, C., & Cuenca, P. (2022). Forest ecosystem frag-
mentation in Ecuador: Challenges for sustainable land
use in the tropical Andean. Land,11(2), 287. https://
doi.org/10.3390/land11020287
Ometto, J.P., K. Kalaba, G.Z. Anshari, N. Chacón, A. Farrell,
S.A. Halim, H. Neufeldt, and R. Sukumar, 2022: Cross-
Chapter Paper 7: Tropical Forests. In: Climate Change
2022: Impacts, Adaptation, and Vulnerability. Contribu-
tion of Working Group II to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change [H.-
O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska,
K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S.
Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambrid-
ge University Press, Cambridge, UK and New York, NY,
USA, pp. 2369-2410, doi:10.1017/9781009325844.024.
Paula, P. A., Zambrano, L., y Paula, P. (2018). Análisis mul-
titemporal de los cambios de la vegetación, en la Reserva
de Producción de Fauna Chimborazo como consecuencia
del cambio climático. Enfoqute,9(2), 125-137. https://
doi.org/10.29019/enfoqueute.v9n2.252
146