Emisiones de C02, urbanización, consumo de energía eléctrica y capital humano, un análisis de cointegración para datos de panel a nivel mundial período 1986 - 2016

Contenido principal del artículo

Alejandro Ramos
Belén Jumbo

Resumen

El objetivo de esta investigación es examinar el nexo causal entre las tasas de crecimiento de las emisiones de CO2, urbanización, consumo de energía eléctrica y capital humano de 114 países a nivel mundial. Los países fueron clasificados en 4 grupos, de acuerdo a su nivel de ingreso per cápita promedio. El período de estudio comprende 1986-2016. Se analizaron técnicas de cointegración de Pedroni (1999), corrección de error de Westerlund (2007) y de causalidad Dumitrescu & Hurlin (2012) para evaluar la relación entre las variables. Para evaluar la fuerza del vector de cointegración en el corto y largo plazo se considera el método de mínimos cuadrados ordinarios de panel dinámico para los países en forma individual y el modelo de mínimos cuadrados ordinarios dinámicos para los grupos de países. Los resultados de la prueba de causalidad indican que existe causalidad unidireccional entre la urbanización y las emisiones de CO2 en los EILC. El consumo de energía causa unidireccionalmente a las emisiones de CO2 en los HIC Las emisiones de CO2 causan unidireccionalmente al capital humano a nivel global. Existe una causalidad bidireccional entre las emisiones de CO2 y el capital humano en los HIC. Finalmente hay una causalidad unidireccional entre el capital humano y las emisiones de CO2 en los ELIC. Una posible implicación de política derivada de esta investigación es que los países deben considerar el mejoramiento de la estructura de la industria junto con una mayor eficiencia en el uso de la energía y un consumo mesurado de la misma, además de aumentar la participación de las energías renovables paramitigar las emisiones de CO2.

Detalles del artículo

Cómo citar
Ramos, A. ., & Jumbo, B. . (2020). Emisiones de C02, urbanización, consumo de energía eléctrica y capital humano, un análisis de cointegración para datos de panel a nivel mundial período 1986 - 2016. Revista Económica, 5(1), 90–104. Recuperado a partir de https://revistas.unl.edu.ec/index.php/economica/article/view/776
Sección
ARTÍCULOS DE INVESTIGACIÓN

Citas

Acheampong, A. O. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where?. Energy Economics, 74, 677-692. [2] Adom, P. K., Kwakwa, P. A., & Amankwaa, A. (2018). The long-run effects of economic, demographic, and political indices on actual and potential CO 2 emissions. Journal of environmental management, 218, 516-526. [3] Ahmed, K., & Long, W. (2012). Environmental Kuznets curve and Pakistan: an empirical analysis. Procedia Economics and Finance, 1, 4-13. [4] Ahmed, K., Rehman,M. U., & Ozturk, I. (2017). What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries. Renewable and Sustainable Energy Reviews, 70, 1142-1153. [5] Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. [6] Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466-479. [7] Al-mulali, U. (2012). Factors affecting CO2 emission in the Middle East: A panel data analysis. Energy, 44(1), 564-569. [8] Alvarado, M. & Ortiz, C. (2018). El rol del capital humano en los ingresosde las provincias de Ecuador. Revista Vista Económica, Vol.4, 120-129. [9] Alvarado, R., & Atienza, M. (2014). The role of market access and human capital in regional wage disparities: Empirical evidence for Ecuador (No. 50). Universidad Católica del Norte, Chile, Department of Economics. [10] Alvarado, R., Ponce, P., Criollo, A., Córdova, K., & Khan, M. K. (2018). Environmental degradation and real per capita output: New evidence at the global level grouping countries by income levels. Journal of Cleaner Production, 189, 13-20. [11] Alvarado, R., Ponce, P., Alvarado, R., Ponce, K., Huachizaca, V., &Toledo, E. (2019). Sustainable and non-sustainable energy and output in Latin America: A cointegration and causality approach withpanel data. Energy Strategy Reviews, 26, 100369. [12] Balaguer, J., & Cantavella, M. (2018). The role of education in the Environmental Kuznets Curve. Evidence from Australian data. Energy Economics, 70, 289-296. [13] Banco Mundial (2018). World Development Indicators. Washington D:C. Disponible en línea. [14] Behera, S. R., & Dash, D. P. (2017). The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renewable and Sustainable Energy Reviews, 70, 96-106. [15] Boamah, K. B., Du, J., Boamah, A. J., & Appiah, K. (2018). A study on the causal effect of urban population growth and international trade on environmental pollution: evidence from China. Environmental Science and Pollution Research, 25(6), 5862-5874. [16] Breitung, J. (2001). The local power of some unit root tests for panel data. In Nonstationary panels, panel cointegration, and dynamic panels (pp. 161-177). Emerald Group Publishing Limited. [17] Cai, Y., Sam, C. Y., & Chang, T. (2018). Nexus between clean energy consumption, economic growth and CO2 emissions. Journal of Cleaner Production, 182, 1001-1011. [18] Cruz, J., & Maldonado, L. (2017). Incidencia del ingreso familiar y la educación en el acceso a la canasta básica familiar en Ecuador. Revista Vista Económica, Vol.3, 19-31. [19] Cumbicus,M., & Tillaguango, B. (2017). Efecto del capital humano en la desigualdad: evidencia empírica para 17 países de América Latina. Revista Vista Económica, Vol.3, 53-62. [20] Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society, 1057-1072. [21] Ding, Y., & Li, F. (2017). Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China’s provincial regions. Energy, 125, 533-542. [22] Dumitrescu, E. I., & Hurlin, C. (2012). Testing for Granger noncausality in heterogeneous panels. Economic Modelling, 29(4), 1450-1460. [23] Enders, W. (2008). Applied econometric time series. John Wiley Sons. [24] Franco, S., Mandla, V. R., & Rao, K. R. M. (2017). Urbanization, energy consumption and emissions in the Indian context A review. Renewable and Sustainable Energy Reviews, 71, 898-907. [25] Godoy, J. (2017). Dinero electrónico y su afección en el capital humano: visión regional en Ecuador. Revista Vista Económica, Vol.3, 74-86. [26] Godoy, J. (2018). Urbanización e industrialización en Ecuador. Revista Vista Económica, Vol.4, 46-57. [27] Granger, C. W. (1988). Causality, cointegration, and control. Journal of Economic Dynamics and Control, 12(2-3), 551-559. [28] Guarnizo, S. (2018). Relación entre capital humano y crecimiento económico de Colombia. Revista Vista Económica, Vol.4, 19-31. [29] Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the econometric society, 1251-1271. [30] Ito, K. (2017). CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. International Economics, 151, 1-6. [31] Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica: Journal of the Econometric Society, 1551-1580. [32] Kasman, A., & Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Economic Modelling, 44, 97-103. [33] Klein-Banai, C., & Theis, T. L. (2013). Quantitative analysis of factors affecting greenhouse gas emissions at institutions of higher education. Journal of Cleaner Production, 48, 29-38. [34] Lee, J. W., & Lee, H. (2016). Human capital in the long run. Journalof Development Economics, 122, 147-169. 35] León, J. (2018). Relación entre el capital humano y el crecimientoeconómico en Bolivia, mediante técnicas de cointegración. Revista Vista Económica, Vol.4, 94-106. [36] Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24. [37] Li, X., Tan, H., & Rackes, A. (2015). Carbon footprint analysis of student behavior for a sustainable university campus in China. Journal of Cleaner Production, 106, 97-108. [38] Meng, J., Liu, J., Guo, S., Li, J., Li, Z., & Tao, S. (2016). Trend and driving forces of Beijing’s black carbon emissions from sectoral perspectives. Journal of Cleaner Production, 112, 1272-1281. [39] Meng, M., Jing, K., & Mander, S. (2017). Scenario analysis of CO2 emissions from China’s electric power industry. Journal of cleaner production, 142, 3101-3108. [40] Mirzaei, M., & Bekri, M. (2017). Energy consumption and CO2 emissions in Iran, 2025. Environmental research, 154, 345-351. [41] Mora, E. (2017). ¿Es importante el gasto público para aumentar el capital humano a nivel global mediante la aplicación de datos de panel? Revista Vista Económica, Vol.3, 42-52. [42] Olaya, E. (2017). Efectos del gasto en investigación y desarrollo en el ingreso de los establecimientos de Ecuador. Revista Vista Económica, Vol.3, 7-18.[43] Ouyang, X., & Lin, B. (2017). Carbon dioxide (CO2) emissions during urbanization: a comparative study between China and Japan. Journal of cleaner production, 143, 356-368. [44] Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and statistics, 61(S1), 653-670. [45] Pedroni, P. (2001). Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary panels, panel cointegration, and dynamic panels (pp. 93-130). Emerald Group Publishing Limited. [46] Pesaran,M. H., & Shin, Y. (1998). An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society Monographs, 31, 371-413. [47] Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. [48] Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. [49] Ponce, P., & Alvarado, R. (2019). Air pollution, output, FDI, trade openness, and urbanization: evidence using DOLS and PDOLS cointegration techniques and causality. Environmental Science and Pollution Research, 26(19), 19843-19858. [50] Poumanyvong, P., & Kaneko, S. (2010). Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecological Economics, 70(2), 434-444. [51] Rafiq, S., Salim, R., & Nielsen, I. (2016). Urbanization, openness, emissions, and energy intensity: a study of increasingly urbanized emerging economies. Energy Economics, 56, 20-28. [52] Raggad, B. (2018). Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: evidence from the ARDL approach and impulse saturation break tests. Environmental Science and Pollution Research, 25(15), 14882-14898. [53] Robinson, O., Kemp, S., &Williams, I. (2015). Carbon management at universities: a reality check. Journal of Cleaner Production, 106, 109-118. [54] Salahuddin,M., Alam, K., Ozturk, I., & Sohag, K. (2017). The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renewable and Sustainable Energy Reviews. [55] Sarango, D. (2018). Análisis de la relación entre el consumo de energía y las emisiones de carbono en Ecuador. Revista Vista Económica, Vol.4, 32-45. [56] Shahbaz,M., Loganathan, N.,Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How urbanization affects CO2 emissions inMalaysia? The application of STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83-93. [57] Versteijlen, M., Salgado, F. P., Groesbeek, M. J., & Counotte, A. (2017). Pros and cons of online education as a measure to reduce carbon emissions in higher education in the Netherlands. Current opinion in environmental sustainability, 28, 80-89. [58] Wang, P., Wu, W., Zhu, B., & Wei, Y. (2013). Examining the impactfactors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Applied Energy, 106, 65-71. [59] Wang, Q., Su, M., Li, R., & Ponce, P. (2019). The effects of energy prices, urbanization and economic growth on energy consumption per capita in 186 countries. Journal of cleaner production, 225, 1017-1032. [60] Wang, Q., Zeng, Y. E., &Wu, B.W. (2016). Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renewable and sustainable energy reviews, 54, 1563-1579. [61] Wang, S., Li, G., & Fang, C. (2017). Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews. [62] Martínez-Zarzoso, I., & Maruotti, A. (2011). The impact of urbanization on CO2 emissions: evidence from developing countries. Ecological Economics, 70(7), 1344-1353. [63] Wang, Y., Chen, L., & Kubota, J. (2016). The relationship between urbanization, energy use and carbon emissions: evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. Journal of Cleaner Production, 112, 1368-1374. [64] Wang, Y., Chen,W., Kang, Y., Li,W., & Guo, F. (2018). Spatial correlation of factors affecting CO 2 emission at provincial level in China: A geographically weighted regression approach. Journal of Cleaner Production, 184, 929-937. [65] Wang, Y., & Zhao, T. (2018). Impacts of urbanization-related factors on CO2 emissions: Evidence fromChina’s three regionswith varied urbanization levels. Atmospheric Pollution Research, 9(1), 15-26. [66] Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and statistics, 69(6), 709-748. [67] Wooldridge, J. M. (1991). On the application of robust, regressionbased diagnostics tomodels of conditional means and conditional variances. Journal of econometrics, 47(1), 5-46. [68] Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press. [69] Wu, Y., Shen, J., Zhang, X., Skitmore, M., & Lu, W. (2016). The impact of urbanization on carbon emissions in developing countries: a Chinese study based on the U-Kaya method. Journal of Cleaner Production, 135, 589-603. [70] Xu, S. C., He, Z. X., & Long, R. Y. (2014). Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Applied Energy, 127, 182-193. [71] Zhang, N., Yu, K., & Chen, Z. (2017). How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy, 107, 678-687. [72] Zhang, Q., Yang, J., Sun, Z., & Wu, F. (2017). Analyzing the impact factors of energy-related CO2 emissions in China: What can spatial panel regressions tell us?. Journal of Cleaner Production, 161, 1085-1093.