Could technology reduce corruption? New empirical evidence using panel data
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta obra está sujeta a la licencia Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional de Creative
Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/4.0/.
References
Andersen, T. B. (2009). E-Government as an anti-corruption strategy. Information Economics
and Policy, 21(3), 201-210.
An, W., & Kweon, Y. (2017). Do higher government wages induce less corruption? Cross-
country panel evidence. Journal of Policy Modeling, 39(5), 809-826
Banco Mundial (2017) https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-
how-does-the-world-bank-classify-countries
Bašná, K. (2019). Income inequality and level of corruption in post-communist European
countries between 1995 and 2014. Communist and Post-Communist Studies.
Batzilis, D. (2019). Electoral competition and corruption: Evidence from municipality audits in
Greece. International Review of Law and Economics, 59, 13-20.
Beekman, G., Bulte, E., & Nillesen, E. (2014). Corruption, investments and contributions to
public goods: Experimental evidence from rural Liberia. Journal of public
Economics, 115, 37-47.
Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of
transparency: E-government and social media as openness and anti-corruption tools for
societies. Government Information Quarterly, 27(3), 264-271.
Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of
transparency: E-government and social media as openness and anti-corruption tools for
societies. Government information quarterly, 27(3), 264-271.
Borsky, S., & Kalkschmied, K. (2019). Corruption in space: A closer look at the world's
subnations. European Journal of Political Economy.
Bindu, N., Sankar, C. P., & Kumar, K. S. (2019). From conventional governance to e-
democracy: Tracing the evolution of e-governance research trends using network
analysis tools. Government Information Quarterly.
Breusch, T. S., & A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model
specification in econometrics. Review of Economic Studies 47: 239-253.
Charoensukmongkol, P., & Moqbel, M. (2014). Does investment in ICT curb or create more
corruption? A cross-country analysis. Public Organization Review, 14(1), 51-63.
Choudhury, S. (2015). Governmental decentralization and corruption revisited: accounting for
potential endogeneity. Economics Letters, 136, 218-222.
De Chiara, A., & Livio, L. (2017). The threat of corruption and the optimal supervisory
task. Journal of economic behavior & organization, 133, 172-186.
Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series
with a unit root. Econometrica: Journal of the Econometric Society, 1057-1072
Drukker, D. M. 2003. Testing for serial correlation in linear panel-data models. The Stata
Journal (3)2, 1-10.
Duerrenberger, N., & Warning, S. (2018). Corruption and education in developing countries:
The role of public vs. private funding of higher education. International Journal of
Educational Development, 62, 217-225
Duerrenberger, N., & Warning, S. (2018). Corruption and education in developing countries:
The role of public vs. private funding of higher education. International Journal of
Educational Development, 62, 217-225.
Dumitrescu, E. I., & Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous
panels. Economic modelling, 29(4), 1450-1460.
Elbahnasawy, N. G. (2014). E-government, internet adoption, and corruption: an empirical
investigation. World Development, 57, 114-126.
Ferreira, I., Cunha, S. R. L., Amaral, L., & Camões, P. J. (2014). ICT for governance in
combating corruption: the case of public e-procurement in Portugal. In 8th International
Conference on Theory and Practice of Electronic Governance (ICEGOV2014) (Vol.
, pp. 109-112). Association for Computing Machinery.
Garrido-Rodríguez, J. C., López-Hernández, A. M., & Zafra-Gómez, J. L. (2019). The impact of
explanatory factors on a bidimensional model of transparency in Spanish local
government. Government Information Quarterly, 36(1), 154-165.
Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.
Greene, W. Econometric Analysis. New York:Prentice-Hall. 2000.
Glaeser, E. L., & Saks, R. E. (2006). Corruption in america. Journal of public Economics, 90(6-
, 1053-1072.
Gans-Morse, J., Borges, M., Makarin, A., Mannah-Blankson, T., Nickow, A., & Zhang, D.
(2018). Reducing bureaucratic corruption: Interdisciplinary perspectives on what
works. World Development, 105, 171-188
Gans-Morse, J., Borges, M., Makarin, A., Mannah-Blankson, T., Nickow, A., & Zhang, D.
(2018). Reducing bureaucratic corruption: Interdisciplinary perspectives on what
works. World Development, 105, 171-188.
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous
panels. Journal of econometrics, 115(1), 53-74
Jain, P. K., Kuvvet, E., & Pagano, M. S. (2017). Corruption’s impact on foreign portfolio
investment. International Business Review, 26(1), 23-35.
Jha, C. K., & Sarangi, S. (2017). Does social media reduce corruption?. Information Economics
and Policy, 39, 60-71.
Junxia, L. (2019). Investments in the energy sector of Central Asia: Corruption risk and policy
implications. Energy Policy, 133, 110912.
Kanyam, D. A., Kostandini, G., & Ferreira, S. (2017). The mobile phone revolution: have
mobile phones and the internet reduced corruption in Sub-Saharan Africa?. World
Development, 99, 271-284.
Kim, S., Kim, H. J., & Lee, H. (2009). An institutional analysis of an e-government system for
anti-corruption: The case of OPEN. Government Information Quarterly, 26(1), 42-50
Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for smart government: A
research agenda.
Lee-Geiller, S., & Lee, T. D. (2019). Using government websites to enhance democratic E-
governance: A conceptual model for evaluation. Government Information
Quarterly, 36(2), 208-225.
Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-
sample properties. Journal of econometrics, 108(1), 1-24.
Lewis, B. D., & Hendrawan, A. (2019). The impact of majority coalitions on local government
spending, service delivery, and corruption in Indonesia. European Journal of Political
Economy, 58, 178-191.
Lindgren, I., Madsen, C. Ø., Hofmann, S., & Melin, U. (2019). Close encounters of the digital
kind: A research agenda for the digitalization of public services. Government
Information Quarterly.
Lio, M. C., Liu, M. C., & Ou, Y. P. (2011). Can the internet reduce corruption? A cross-
country study based on dynamic panel data models. Government Information
Quarterly, 28(1), 47-53.
Madariaga, L., Nussbaum, M., Marañón, F., Alarcón, C., & Naranjo, M. A. (2019). User
experience of government documents: A framework for informing design
decisions. Government Information Quarterly, 36(2), 179-195.
Montes, G. C., Bastos, J. C. A., & de Oliveira, A. J. (2019). Fiscal transparency, government
effectiveness and government spending efficiency: Some international evidence based
on panel data approach. Economic Modelling, 79, 211-225.
Policardo, L., Carrera, E. J. S., & Risso, W. A. (2019). Causality between income inequality and
corruption in OECD countries. World Development Perspectives, 100102.
Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple
regressors. Oxford Bulletin of Economics and statistics, 61(S1), 653-670.
Pedroni, P. (2001). Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary
panels, panel cointegration, and dynamic panels. Emerald Group Publishing Limited.
(págs. 93-130). Emerald Group Publishing Limited.
Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series
regression. Biometrika, 75(2), 335-346.
Policardo, L., Carrera, E. J. S., & Risso, W. A. (2019). Causality between income inequality and
corruption in OECD countries. World Development Perspectives, 100102.
Sabic-El-Rayess, A., & Mansur, N. N. (2016). Favor reciprocation theory in education: New
corruption typology. International Journal of Educational Development, 50, 20-32.
Schneider, P. H. (2005). International trade, economic growth and intellectual property rights: A
panel data study of developed and developing countries. Journal of Development
Economics, 78(2), 529-547.
Shrivastava, U., & Bhattacherjee, A. (2014). ICT development and corruption: an empirical
study
Tang, Z., Chen, L., Zhou, Z., Warkentin, M., & Gillenson, M. L. (2019). The effects of social
media use on control of corruption and moderating role of cultural tightness-
looseness. Government Information Quarterly.
Tanzi, V., & Davoodi, H. (1998). Corruption, public investment, and growth. In The welfare
state, public investment, and growth(pp. 41-60). Springer, Tokyo.
Vargas, G. y Guerrero-Riofrío, P. (2019). ¿Puede la tecnología disminuir la desigualdad?
Evidencia empírica usando técnicas de datos de panel en 61 países durante 2000-
ReVista Económica, 7(6), 45-52.
Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics
and statistics, 69(6), 709-748.
Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge,
Massachusetts:The MIT Press.
Wu, S., Li, B., Nie, Q., & Chen, C. (2017). Government expenditure, corruption and total factor
productivity. Journal of cleaner production, 168, 279-289.
Zhang, H., Song, Y., Tan, S., Xia, S., Zhang, H., Jiang, C., & Lv, Y. (2019). Anti-corruption
efforts, public perception of corruption, and government credibility in the field of real
estate: An empirical analysis based on twelve provinces in China. Cities, 90, 64-73.
Zhang, H., An, R., & Zhong, Q. (2019). Anti-corruption, government subsidies, and investment
efficiency. China Journal of Accounting Research, 12(1), 113-133.
Zuazu, I. (2019). The growth effect of democracy and technology: An industry disaggregated
approach. European Journal of Political Economy, 56, 115-131.