Geostatistical interpolation methods analysis for estimating spatial precipitation in the Paute River basin
Keywords:
cokriging, interpolation, kriging, precipitationAbstract
The precipitation and its spatial and temporal variability are an important input for the study of enviromental science. To obtain data continuosusly in an área it is expensive, especially in montain áreas due to the rugged terrain. The Kriging and Cokriging Geostatistial Interpolation methods were used for this research in order to estimate the average rainfall in places devoid of information. This was done from historiacal data (1980 –2010) obtained from 19 weather stations int the Paute River Basin. By adjusting the semivariogram, optimal interpolation parameters were determined in order to obtain prediction maps and error measurements. The results did not show greater variation between the two methods, indicating that the precipitation does not depend only on the height, but it is necessary to consider other variables.Metrics
References
Bilewu, S. O., & Sule, B. F. (2015). Selection of an Appropriate Interpolation Method for Rainfall Data in Central Nigeria. Ethiopian Journal of Environmental Studies & Management, 8(4), 423–432. http://doi.org/10.4314/ejesm.v8i4.7
Borges, P. de A., Franke, J., Anunciação, Y. M. T., Weiss, H., & Bernhofer, C. (2015). Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theoretical and Applied Climatology, 123(1), 335–348. http://doi.org/10.1007/s00704-014-1359-9
Buytaert, W., Celleri, R., Willems, P., Bièvre, B. De, & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3-4), 413–421. http://doi.org/10.1016/j.jhydrol.2006.02.031
Campozano, L., Sánchez, E., Aviles, a, & Samaniego, E. (2014). Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana, 5(1), 99–115. Retrieved from http://dspace.ucuenca.edu.ec:8080/handle/123456789/5586
Castro, L. M., Girona´s, J., & Ferna´ndez, B. (2014). Spatial estimation of daily precipitation in regions with complex relief and scarce data using terrain orientation. Journal of Hydrology, 517, 481–492. http://doi.org/10.1016/j.jhydrol.2014.05.064
Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space – time rainfall variability in the Paute Basin , Ecuadorian Andes. Wiley InterScience, 3327(August), 3316–3327. http://doi.org/10.1002/hyp
Chahouki, M. A. Z., Chahouki, A. Z., Malekian, A., Bagheri, R., & Vesali, S. A. (2014). Evaluation of Different Cokriging Methods for Rainfall Estimation in Arid Regions ( Central Kavir Basin in Iran ). Desert, 1, 1–9.
Climate, W. (2007). THE ROLE OF CLIMATOLOGICAL NORMALS IN A CHANGING CLIMATE Edited by : Omar Baddour and Hama Kontongomde. Organization, (61). Retrieved from https://www.wmo.int/datastat/documents/WCDMPNo61_1.pdf
Coulibaly, M., & Becker, S. (2009). Spatial Interpolation of Annual Precipitation in South Africa-Comparison and Evaluation of Methods Spatial Interpolation of Annual Precipitation in South Africa - Comparison and Evaluation of Methods. Water International, (May 2012), 37–41.
Fallah Ghalhari, G. A., Dadashi Roudbari, A. A., & Asadi, M. (2016). Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arabian Journal of Geosciences, 9(12), 595. http://doi.org/10.1007/s12517-016-2606-4
Fleming, M., Stuart Champin III, F., Cramer, W., Hufford, G., & Serreze, M. (2000). Geographic patterns and dynamics of alaskan climate interpolated from a sparse station record. Global Change Biology.
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113–129. http://doi.org/10.1016/S0022-1694(00)00144-X
Hay, L., Viger, R., & McCabe, G. (1998). Precipitation interpolation in mountainous regions using multiple linear regression. In In Proceedings of the HeadWater’98 conference, Italy.
Hevesi, J., Istok, J., & Flint, A. (1992). Precipitation Estimation in mountainous Terrain Using Multivariate Geostatistics Part I.pdf, 661–676.
Johnston, K., Ver Hoef, J. M. ., Krivoruchko, K., & Lucas, N. E. (2003). Using ArcGIS Geostatistical Analyst.
Karani, H. P., Eslami, H., & Vafakhah, M. (2014). Application of Geostatistics for Evaluation of Spatial variability of Precipitation concentration Index ( PCI ) in Ghazvin Province , Iran, 3(March), 60–64.
Keblouti, M., Ouerdachi, L., & Boutaghane, H. (2012). Spatial interpolation of annual precipitation in Annaba-Algeria - Comparison and evaluation of methods. Energy Procedia, 18, 468–475. http://doi.org/10.1016/j.egypro.2012.05.058
Montgomery, D. C., & Runger, G. C. (2011). bibliografia. John
Wiley & Sons, Ltd.
Moreno Jiménez, A., & Cañada Torrecilla, R. (2006). Sistemas y Análisis de la Información Geográfica.
Tao, T. (2009). Uncertainty Analysis of Interpolation Methods in Rainfall Spatial Distribution–A Case of Small Catchment in Lyon. Journal of Water Resource and Protection, 01(02), 136–144. http://doi.org/10.4236/jwarp.2009.12018
Thiessen, A. H. (1911). Precipitation averages for large areas, (7), 1082–1084.
Univesidad del Azuay, U., & Consejo de Gestión de aguas de la cuenca del Paute, C. (2008). Proyecto : Caracterización territorial de la cuenca hidrográfica del río Paute, Fase I y II.
Vicente-Serrano, S., Saz-Sánchez, M., & Cuadrat, J. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley ( Spain ): application to annual precipitation and temperature. Climate Research, 24, 161–180.
Vuille, M., Bradley, R. ., & Keimig, F. (2000). Climate variability in the andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. Journal of Climate, 13, 2520–2535.
Wang, S., Huang, G. H., Lin, Q. G., Li, Z., Zhang, H., & Fan, Y. R. (2014). Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. International Journal of Climatology, 34(14), 3745–3751. http://doi.org/10.1002/joc.3941
Webster, R., & Oliver, M. (2007). Geostatistics for Environmental Scientists (Second Edi). John Wiley & Sons, Ltd.
Zhang, X., Lu, X., & Wang, X. (2016). Comparison of Spatial Interpolation Methods Based on Rain Gauges for Annual Precipitation on the Tibetan Plateau. Polish Journal of Environmental Studies, 25(3), 1339–1345. http://doi.org/10.15244/pjoes/61814
Zhang, X., & Srinivasan, R. (2009). GIS-Based Spatial Precipitation Estimation: A comparison of Geostatical approaches, 45(4), 894–906.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Bosques Latitud Cero
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.