Relationship between trade and labor productivity globally: An analysis with panel data

Main Article Content

Jimmy Erraes
Lizeth Cuesta

Abstract

The present research examines the relationship between trade and labor productivity in113 countries using panel data techniques during 1990-2014. For this, data collectedfrom the World Development Indicators (2015) was used, classifying countries accordingto their income level into six groups: extremely high income (EHIC), high income (HIC),upper middle income (MHIC), middle income Low Income (MLIC), Low Income (LIC), andExtremely Low Income (ELIC). The Generalized Least Squares (GLS) model was used, aswell as cointegration and causality techniques used for panel data. It was determined that,only at the global level, there was a long-term relationship between the model variables,while, in the short term, the relationship turned out to be significant at the global leveland in all income groups. Regarding causality, a bidirectional causal relationship was establishedat the global level. In the MLIC and ELIC there is a unidirectional causal relationshipthat goes from trade to labor productivity, while in the HIC and MHIC, the causality isthe opposite, that is, labor productivity explains trade. The policy implication focuses ongreater investment in exports in order to diversify the commercial offer as a fundamentalfactor to generate employment and competitiveness in the international environment.

Article Details

How to Cite
Erraes, J., & Cuesta, L. (2021). Relationship between trade and labor productivity globally: An analysis with panel data. Revista Económica, 8(2), 21–29. Retrieved from https://revistas.unl.edu.ec/index.php/economica/article/view/906
Section
RESEARCH ARTICLES

References

Acemoglu, D. (2002). Technical change, inequality, and

the labor market. Journal of economic literature, 40(1), 7-

Akaike, H. (1974). A new look at the statistical model

identication. IEEE Transactions on Automatic Control,

(6), 716- 723.

Álvarez, F., & Lucas, R. E. (2007). Capital accumulation

and international trade. Working paper, University of

Chicago. In press.

Álvarez, I. C., Barbero, J., Rodríguez-Pose, A., & Zofío,

J. L. (2018). Does institutional quality matter for trade?

Institutional conditions in a sectoral trade framework.

World Development, 103, 72-87.

Anderson, K.,& Martin, W.(2005). Agricultural trade reform

and the Doha Development Agenda. The World

Bank.

Banco Mundial. (2015).World Development Indicators.

Data country.

Breitung, J. (2002). Nonparametric tests for unit roots

and cointegration. Journal of econometrics, 108(2), 343-

Corlay, G., Dupraz, S., Labonne, C., Muller, A., Antonin,

C., & Daudin, G. (2017). Comment: Inferring trade costs

from trade booms and trade busts. International Economics,

, 1-8.

Díaz, H. O. L., & Navarrete, R. A. (2017). Crecimiento,

competitividad y restricción externa en América Latina.

Investigación económica , 76 (300), 53-80.

Dickey, D., & Fuller,W. A., 1981. Likelihood ratio statistics

for autoregressive time series with a unit root.

Econometrica, 49, 1057-1072

Dumitrescu, E. I., & Hurlin, C. (2012). Testing for

Granger noncausality in heterogeneous panels. Economic

Modelling, 29(4), 1450-1460.

Estevadeordal, A., & Robert, C. (2001). Las Américas sin

barreras: negociaciones comerciales de acceso a mercados

en los años noventa. IDB.

Gazol, A. (2016). Libre comercio: tratados y nuevo orden.

Un balance. Economía UNAM, 13 (38), 122-130

Gómez , C., & González, J. (2017). Competencia y competitividad

de las exportaciones de México y China en

el mercado estadounidense: nueva evidencia. México y

la cuenca del Pacíco, 6 (16), 79-105.

Hausman J.(1978) Specication tests in econometrics.

Econometrica 4, :1251–1271

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for

unit roots in heterogeneous panels. Journal of Econometrics

, 115 (1), 53-74.

Ina C., & Jäkel, Marcela. (2017). Trade policy preferences

and factor abundance. Journal of International Economics

,106, 1-19..

Jansen, M., & Lee, E. (2007). Comercio y empleo: los

retos de la investigación sobre las políticas. OIT/OMC.

Lardy, Nicholas R. (2010). "The Sustainability of China’s

Recovery of the Global Recession", Policy Brief, (PB10-

, 1-8.

Levine, A., Lin, C. F., &Chu, C. S. J. (2002).Unit root tests

in panel data: asymptotic and nite-sample properties.

Journal of Econometrics, 108 (1), 1-24.

Lin, J. Y., Dinh, H. T., & Im, F. (2010). US–China external

imbalance and the global nancial crisis.China Economic

Journal , 3 (1), 1-24.

Lin, J. Y. (2011). Demystifying the Chinese economy.

Cambridge University Press.

Maddala, G. S., & Wu, S. (1999). A comparative study

of unit root tests with panel data and a new simple test.

Oxford Bulletin of Economics and Statistics, 61 (S1), 631-

.

Malcolm, M. (2017). Do local exports impact congressional

voting on free trade agreements?.Economics Letters,

, 31-34.

Mirza, T., Narayanan, B., & van Leeuwen, N. (2014). Impact

of Chinese growth and trade on labor in developed

countries. Economic Modelling, 38, 522-532.

Mullings, R., & Mahabir, A. (2018). Growth by Destination:

The Role of Trade in Africa’s Recent Growth

Episode.World Development, 102, 243-261.

Mutreja, P., Ravikumar, B., & Sposi, M. (2018). Capital

goods trade, relative prices, and economic development.

Review of Economic Dynamics, 27, 101-122.

Navas, A. (2010). La apertura al comercio exterior y sus

efectos sobre la productividad en presencia de diferencias

intersectoriales.Universidad Autónoma de Madrid

Orozco, R. V. (2017). El impacto del comercio del banano

en el desarrollo del Ecuador.Revista AFESE,53 (53).

Ortiz, C. H. (2017). Un análisis smithiano del crecimiento

económico colombiano: avances metodológicos.

Lecturas de Economía, 87, 35-66.

Pedroni, P. (1999). Critical values for cointegration tests

in heterogeneous panels with multiple regressors. Oxford

Bulletin of Economics and Statistics, 61 (S1), 653-

Phillips, P. C., & Perron, P. (1988). Testing for a unit root

in time series regression. Biometrika, 75 (2), 335-346.

Qi, C., & Zhang, J. X. (2018). The economic impacts

of the China-Australia Free Trade Agreement-A general

equilibrium analysis.China Economic Review , 47, 1-11

Torres, J. (2013). Colombia: inserción y desequilibrios

comerciales en la Cuenca del Pacíco. Problemas del desarrollo,

(174), 139-165.

Üngör, M. (2017). Productivity growth and labor reallocation:

Latin America versus East Asia. Review of Economic

Dynamics, 24, 25-42.

Vanegas, J. G., Restrepo, J. A., & González, M. A. (2015).

Negocios y comercio internacional: evidencias de investigación

académica para Colombia. Suma de Negocios,

(13), 84-91

Wen, M. (2004). E-commerce, productivity, and uctuation.

Journal of Economic Behavior & Organization, 55(2),

-206

Westerlund, J. (2007). Testing for error correction in

panel data. Oxford Bulletin of Economics and Statistics,

(6), 709-748.

Womack, B. (2013). Beyond win win: Rethinking China’s

international relationship in an era of economic uncertainty.

International Aairs, 89(4),911-928.

Wooldridge, J. M. 2002. Econometric Analysis of Cross

Section and Panel Data. Cambridge, Massachusetts

:The MIT Press