Relación entre las emisiones de Co2, comercio y valor agregado bruto para países con diferentes niveles de ingresos

Autores/as

  • Gabriela Yangari Universidad Nacional de Loja
  • Priscila Mendez Universidad Nacional de Loja
  • Jimmy Rocano Universidad Nacional de Loja

Palabras clave:

Co2, Comercio, Agricultura, Servicios, Industria;, Datos de panel

Resumen

El objetivo de esta investigación es examinar el efecto del comercio y del valor agregado bruto en las emisiones de Co2, en 97 países utilizamos datos de panel del World Development Indicators del Banco Mundial en el periodo de 1980-2016. Con el fin de capturar la heterogeneidad entre los países por el nivel de ingreso, clasificamos a los países en cinco grupos: ingreso alto, ingreso medio-alto, ingresomedio-bajo, ingreso bajo e ingresos extremadamente bajos. Utilizando técnicas de cointegración y de causalidad para datos de panel, encontramos evidencia empírica robusta que sugiere que el comercio y el valor agregado bruto y las emisiones de Co2 tienen una relación de equilibrio de largo y corto plazo en los diferentes grupos de ingreso.

Citas

Acaro, L., & Luna, S. (2017). La deuda externa y las importaciones en Ecuador: una relación positiva con efectos negativos. Revista Vista Económica, Vol.3, 87-96. [2] Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. [3] Ahmed, K., Bhattacharya, M., Shaikh, Z., Ramzan, M., & Ozturk, I. (2017). Emission intensive growth and trade in the era of the Association of Southeast Asian Nations (ASEAN) integration: An empirical investigation from ASEAN-8. Journal of Cleaner Production, 154, 530-540. [4] Alvarado, R., Ponce, P., Alvarado, R., Ponce, K., Huachizaca, V., & Toledo, E. (2019). Sustainable and non-sustainable energy and output in Latin America: A cointegration and causality approach with panel data. Energy Strategy Reviews, 26, 100369. [5] Armijos, Y., Ludeña, X., & Ramos, A. (2017). El rol de las exportaciones en el crecimiento: una comparación entre países primarioexportador (Ecuador), ymanufacturero-exportador (México y Alemania). Revista Vista Económica, Vol.2, 66-76. [6] Breitung, J. (2002). Nonparametric tests for unit roots and cointegration. Journal of econometrics, 108(2), 343-363. [7] Chakraborty, D., & Mukherjee, S. (2013). How do trade and investment flows affect environmental sustainability? Evidence from panel data. Environmental Development, 6, 34-47. [8] Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, 1057-1072. [9] Enders, W. (2008). Applied econometric time series. John Wiley Sons. [10] Fernández-Amador, O., Francois, J. F., & Tomberger, P. (2016). Carbon dioxide emissions and international trade at the turn of the millennium. Ecological economics, 125, 14-26. [11] Flores-Chamba, J., López-Sánchez,M., Ponce, P., Guerrero-Riofrío, P., & Álvarez-García, J. (2019). Economic and Spatial Determinants of Energy Consumption in the European Union. Energies, 12(21), 4118. [12] Gangopadhyay, P., & Elkanj, N. (2009). Politics of defence spending and endogenous inequality. Peace Economics, Peace Science and Public Policy, 15(1), 27-49. [13] Godoy, V. S. L. (2018). Crecimiento económico y el uso de energía sustentable y no sustentable: un enfoque del caso ecuatoriano usando técnicas de cointegración. Killkana sociales: Revista de Investigación Científica, 2(3), 75-86. [14] Guarnizo. S.,Méndez, P., & Salinas, A. (2017).Dependencia del destino de las exportaciones en países dependientes de los primarioexportadores: una estimación para Canadá, Chile y Ecuador. Revista Vista Económica, Vol.2, 48-54. [15] Hasanov, F. J., Liddle, B., & Mikayilov, J. I. (2018). The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Economics, 74, 343-350. [16] Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the econometric society, 1251-1271. [17] He, Z., Xu, S., Shen, W., Long, R., & Chen, H. (2017). Impact of urbanization on energy related CO2 emission at different development levels: regional difference in China based on panel estimation. Journal of cleaner production, 140, 1719-1730. [18] Hossain, M. S. (2011). Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries. Energy Policy, 39(11), 6991-6999. [19] Hu, H., Xie, N., Fang, D., & Zhang, X. (2018). The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from25 developing countries. Applied energy, 211, 1229-1244. [20] Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74. [21] Inglesi-Lotz, R., & Dogan, E. (2018). The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub-Saharan Africa’s ig 10 electricity generators. Renewable Energy, 123, 36-43. [22] Ito, K. (2017). CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. International Economics, 151, 1-6. [23] Jeffrey, C., & Perkins, J. D. (2015). The association between energy taxation, participation in an emissions trading system, and the intensity of carbon dioxide emissions in the European Union. The International Journal of Accounting, 50(4), 397-417. [24] Kasman, A., & Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Economic modelling, 44, 97-103. [25] Klomp, J., & Hoogezand, B. (2018). Natural disasters and agricultural protection: A panel data analysis. World Development, 104, 404-417. [26] Kose, M. A., Prasad, E. S., & Terrones, M. E. (2006). How do trade and financial integration affect the relationship between growth and volatility?. Journal of international Economics, 69(1), 176-202. [27] Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24. [28] Lin, B., & Xu, M. (2018). Regional differences on CO2 emission efficiency in metallurgical industry of China. Energy policy, 120, 302- 311. [29] Luo, Y., Long, X.,Wu, C., & Zhang, J. (2017). Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. Journal of Cleaner Production, 159, 220-228. 30] Ozturk, I. (2017). Measuring the impact of alternative and nuclear energy consumption, carbon dioxide emissions and oil rents on specific growth factors in the panel of Latin American countries. Progress in Nuclear Energy, 100, 71-81. [31] Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and statistics, 61(S1), 653-670. [32] Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. [33] Piña, M., Jiménez, N., & Chuncho, P. (2017). Concentración en el destino de las exportaciones: un análisis empírico para los países de la Comunidad Andina de Naciones. Revista Vista Económica, Vol.2, 55-65. [34] Santos, A. S.,Gilio, L.,Halmenschlager, V.,Diniz, T. B., &Almeida, A. N. (2018). Flexible-fuel automobiles and CO2 emissions in Brazil: Parametric and semiparametric analysis using panel data. Habitat International, 71, 147-155. [35] Sarango, D. (2018). Análisis de la relación entre el consumo de energía y las emisiones de carbono en Ecuador. Revista Vista Económica, Vol.4, 32-45. [36] Shahbaz, M., Tiwari, A. K., & Nasir, M. (2013). The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy Policy, 61, 1452-1459. [37] Shahbaz, M., Nasreen, S., Ahmed, K., & Hammoudeh, S. (2017). Trade openness–carbon emissions nexus: the importance of turning points of trade openness for country panels. Energy Economics, 61, 221-232. [38] Shuai, C., Shen, L., Jiao, L., Wu, Y., & Tan, Y. (2017). Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from1990 to 2011. Applied energy, 187, 310-325. [39] Sinha, A., & Sen, S. (2016). Atmospheric consequences of trade and human development: A case of BRIC countries. Atmospheric Pollution Research, 7(6), 980-989. [40] Wang, S., Fang, C., Wang, Y., Huang, Y., & Ma, H. (2015). Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecological Indicators, 49, 121-131. [41] Wang, Q., Su, M., Li, R., & Ponce, P. (2019). The effects of energy prices, urbanization and economic growth on energy consumption per capita in 186 countries. Journal of cleaner production, 225, 1017-1032. [42] Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and statistics, 69(6), 709-748. [43] Wu, T. T. (2015). Firm heterogeneity, trade, multinationals, and growth: A quantitative evaluation. Journal of International Economics, 97(2), 359-375. [44] Xu, X., Mu, M., & Wang, Q. (2017). Recalculating CO2 emissions from the perspective of value-added trade: An input-output analysis of China’s trade data. Energy Policy, 107, 158-166. [45] Yanikkaya, H. (2003). Trade openness and economic growth: a cross-country empirical investigation. Journal ofDevelopment economics, 72(1), 57-89.

Archivos adicionales

Publicado

2020-07-15

Cómo citar

Yangari, G., Mendez, P., & Rocano, J. (2020). Relación entre las emisiones de Co2, comercio y valor agregado bruto para países con diferentes niveles de ingresos. Revista Económica, 5(1), 105–114. Recuperado a partir de https://revistas.unl.edu.ec/index.php/economica/article/view/777