Impacto de la carga lenta de vehículos eléctricos en la calidad de energía de la red de distribución: Una prospección literaria

Autores/as

DOI:

https://doi.org/10.54753/cedamaz.v14i1.2220

Palabras clave:

Calidad de energía, Carga lenta de VE, Redes de distribución, V2G, Vehículos eléctricos

Resumen

La introducción de vehículos eléctricos (VE) se destaca como una estrategia fundamental para reducir las emisiones de gases de efecto invernadero y avanzar en la descarbonización del transporte. No obstante, este cambio plantea desafíos considerables en las redes eléctricas. La adopción generalizada de VE puede generar fluctuaciones en la demanda, picos de carga y afectar la estabilidad de la red eléctrica y la calidad de la energía. En respuesta a estos desafíos, este artículo presenta una revisión sistemática de la literatura utilizando el método PRISMA para evaluar los impactos de la carga lenta de VE en la calidad de la energía de las redes de distribución. Los resultados destacan la tecnología de vehicle-to-grid (V2G) como una solución eficaz al permitir que los VE funcionen como fuentes de generación distribuida. Se mencionan enfoques como algoritmos de distribución de carga, estrategias de carga inteligente y modelos de optimización. A pesar de estos avances, se subraya la limitación de datos reales y estudios locales en América Latina, evidenciándose la necesidad de investigaciones contextualizadas en la región para abordar adecuadamente los desafíos específicos de la integración de VE en las redes eléctricas en un contexto local.

Métricas

Cargando métricas ...

Citas

Abid, M. S., Apon, H. J., Alavi, A., Hossain, M. A., y Abid, F. (2023, febrero). Mitigating the Effect of Electric Vehicle integration in Distribution Grid using Slime Mould Algorithm. Alexandria Engineering Journal, 64, 785–800. Descargado de https://www .sciencedirect .com/science/article/pii/S1110016822006160 doi: 10.1016/j.aej.2022.09.022

Albuquerque, F. D., Maraqa, M. A., Chowdhury, R., Mauga, T., y Alzard, M. (2020). Greenhouse gas emissions associated with road transport projects: current status, benchmarking, and assessment tools. Transportation Research Procedia, 48, 2018–2030.

Bragatto, T., Carere, F., Cresta, M., Gatta, F., Geri, A., Maccioni, M., y Paulucci, M. (2023, agosto). Developing a public EV charging infrastructure in a DSO’s perspective: Hosting capacity assessment and grid reinforcements on a real case study. Electric Power Systems Research, 221, 109463. Descargado de https://www .sciencedirect .com/science/article/pii/S0378779623003528 doi: 10 .1016 / j .epsr .2023.109463

Chaudry, M., Jayasuriya, L., Blainey, S., Lovric, M., Hall, J. W., Russell, T., . . . Wu, J. (2022, enero). The implications of ambitious decarbonisation of heat and road transport for Britain’s net zero carbon energy systems. Applied Energy, 305, 117905. Descargado de https://www .sciencedirect .com/science/article/pii/S0306261921012186 doi: 10.1016/j.apenergy.2021.117905

Chudy, A., y Mazurek, P. (2019, noviembre). Electromobility – the Importance of Power Quality and Environmental Sustainability. Journal of Ecological Engineering, 20(10), 15–23. Descargado 2023-12-18, de http :// www .journalssystem .com / jeeng /Electromobility -the -Importance -of -Power-Quality -and -Environmental -Sustainability,112713,0,2.html doi: 10.12911/22998993/112713

Diahovchenko, I., Petrichenko, R., Petrichenko, L., Mahnitko, A., Korzh, P., Kolcun, M., y Cˇ onka, Z. (2022, septiembre). Mitigation of transformers’ loss of life in power distribution networks with high penetration of electric vehicles. Results in Engineering, 15, 100592. Descargado de https://www.sciencedirect.com/science/article/pii/S2590123022002626 doi:10.1016/j.rineng.2022.100592

Essiet, I. O., y Sun, Y. (2021, noviembre). Optimal opencircuit voltage (OCV) model for improved electric vehicle battery state-of-charge in V2G services. Energy Reports, 7, 4348–4359. Descargado de https://www .sciencedirect .com/science/article/pii/S2352484721004947 doi: 10 .1016/j .egyr .2021 .07.029

Golovanov, N., y Marinescu, A. (2019). Electromobility and climate change. En 2019 8th international conference on modern power systems (mps) (pp. 1–5).

González, J. (2023, octubre). Chile: “Mi Taxi Eléctrico” entra en su segunda etapa. Descargado 2024-05-23, de https://latamobility.com/chile-mi-taxi-electrico-entra-en-su-segunda-etapa/

Gómez-Ramírez, G. A., Solis-Ortega, R., y Ross-Lépiz, L. A. (2023, noviembre). Impact of electric vechicles on power transmission grids. Heliyon, 9(11), e22253. Descargado de https://www.sciencedirect.com/science/article/pii/S2405844023094616 doi:10.1016/j.heliyon.2023.e22253

Hu, J., Zhou, H., Zhou, Y., Zhang, H., Nordströmd, L., y Yang, G. (2021, agosto). Flexibility Prediction of Aggregated Electric Vehicles and Domestic HotWater Systems in Smart Grids. Engineering, 7(8), 1101–1114. Descargado de https://www.sciencedirect.com/science/article/pii/S2095809921002605 doi:10.1016/j.eng.2021.06.008

Jain, A., y Bhullar, S. (2024, junio). Operating modes of grid integrated PV-solar based electric vehicle charging system- a comprehensive review. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 8, 100519. Descargado de https://www .sciencedirect .com/science/article/pii/S2772671124001013 doi: 10 .1016/ j .prime .2024.100519

Karunathilake, H., y Witharana, S. (2023). Fossil fuels and global energy economics. En Reference Module in Earth Systems and Environmental Sciences (p. B9780323939409000505). Elsevier. Descargado 2024-05-31, de https://linkinghub.elsevier.com/retrieve/pii/B9780323939409000505 doi:10.1016/B978-0-323-93940-9.00050-5

Kuwałek, P., y Wiczy´nski, G. (2022, diciembre). Monitoring Single-Phase LV Charging of Electric Vehicles. Sensors, 23(1), 141. Descargado 2023-12-18, de https://www.mdpi.com/1424-8220/23/1/141 doi:10.3390/s23010141

Mahmoudi, E., Santos Barros, T. A. d., y Filho, E. R. (2024, junio). Forecasting urban electric vehicle charging power demand based on travel trajectory simulation in the realistic urban street network. Energy Reports, 11, 4254–4276. Descargado de https://www .sciencedirect .com/science/article/pii/S2352484724002105 doi: 10 .1016/j .egyr .2024 .04.005

Manimaran, B., y Ranihemamalini, R. (2023, febrero). Antlion-based sliding mode control of vienna rectifier for internet of electric vehicle. Measurement: Sensors, 25, 100651. Descargado de https://www .sciencedirect .com/science/article/pii/S2665917422002859 doi: 10 .1016/j .measen .2022.100651

Mudaheranwa, E., Sonder, H. B., Cipcigan, L., y Ugalde-Loo, C. E. (2023, julio). Feasibility study and impacts mitigation with the integration of Electric Vehicles into Rwanda’s power grid. Electric Power Systems Research, 220, 109341. Descargado de https://www .sciencedirect .com/science/article/pii/S0378779623002304 doi: 10 .1016 / j .epsr .2023.109341

Muttaqi, K. M., Isac, E., Mandal, A., Sutanto, D., y Akter, S. (2024, enero). Fast and random charging of electric vehicles and its impacts: State-of-the-art technologies and case studies. Electric Power Systems Research, 226, 109899. Descargado 2023-12-18, de https://linkinghub.elsevier.com/retrieve/pii/S0378779623007873 doi: 10.1016/j.epsr.2023.109899

Nafeh, A. E.-S. A., Omran, A. E.-F. A., Elkholy, A., y Yousef, H. (2024, marzo). Optimal economical sizing of a PV-battery grid-connected system for fast charging station of electric vehicles using modified snake optimization algorithm. Results in Engineering, 21, 101965.Descargado de https://www.sciencedirect.com/science/article/pii/S2590123024002184 doi: 10.1016/j.rineng.2024.101965

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., . . . Alonso-Fernández, S. (2021, septiembre). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. Descargado 2024-05-23, de https://linkinghub.elsevier.com/retrieve/pii/S0300893221002748 doi: 10.1016/j.recesp.2021.06.016

Paucara, J. D., Peña, J. C. U., y Sal Y Rosas, D. (2024). HESS Management for Virtual Inertia, Frequency, and Voltage Support Through Off-Board EV Bidirectional Chargers. IEEE Open Journal of the Industrial Electronics Society, 5, 376–385. Descargado 2024-05-20, de https://ieeexplore.ieee.org/document/10508895/ doi: 10.1109/OJIES.2024.3394290

Prem, P., Sivaraman, P., Sakthi Suriya Raj, J. S., Jagabar Sathik, M., y Almakhles, D. (2020, octubre). Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station. Automatika, 61(4), 614–625. Descargado2023-12-18, de https://www.tandfonline.com/doi/full/10.1080/00051144.2020.1810506 doi: 10.1080/00051144.2020.1810506

Pretorius, B., Strauss, J., y Booysen, M. (2024, abril). Grid and mobility interdependence in the eventual electrification of operational minibus taxis in cities in sub-Saharan Africa. Energy for Sustainable Development, 79, 101411. Descargado de https://www .sciencedirect .com/science/article/pii/S0973082624000371 doi: 10.1016/j.esd.2024.101411

Programa Movete en Bici. (s.f.). Descargado 2024-05-23, de http://fcg.uader.edu.ar/index.php/programa-movete-en-bici.html78 Pérez, D., Gutiérrez, M. C., y Mix Vidal, R. (2019, abril). Electromovilidad: Panorama actual en América Latina y el Caribe: Versión infográfica (Inf. Téc.). https://publications.iadb.org/es/electromovilidadpanorama-actual-en-america-latina-y-el-caribeversion-infografica. Descargado 2024-05-22,de https :// publications .iadb .org / es /electromovilidad-panorama-actual-en-americalatina-y-el-caribe-version-infografica doi:10.18235/0001654

Sabyasachi, S., Singh, A. R., Godse, R., Jaiswal, S., Bajaj,M., Srivastava, I., . . . Misak, S. (2024, abril). Reimagining E-mobility: A holistic business model for the electric vehicle charging ecosystem. Alexandria Engineering Journal, 93, 236–258. Descargado de https://www .sciencedirect .com/science/article/pii/S1110016824002229 doi: 10.1016/j.aej.2024.03.004

Tian, H., Kontis, E. O., Barzegkar-Ntovom, G. A., Papadopoulos, T. A., y Papadopoulos, P. N. (2024, junio). Dynamic modeling of distribution networks hosting electric vehicles interconnected via fast and slow chargers. International Journal of Electrical Power & Energy Systems, 157, 109811. Descargado de https://www.sciencedirect.com/science/article/pii/S0142061524000322 doi: 10 .1016/j.ijepes.2024.109811

TransMilenio. (2013, agosto). Historia de TransMilenio. Descargado 2024-05-23, de https :// www.transmilenio .gov .co/publicaciones/146028/historia-de-transmilenio/UCUENCA. (2023). En cuenca se impulsa la movilidadsostenible – ucuenca. Descargado 2023-10-03, de https :// www .ucuenca .edu .ec /noticias/en-cuenca-se-impulsa-la-movilidad-sostenible/

Varone, A., Heilmann, Z., Porruvecchio, G., y Romanino, A. (2024, enero). Solar parking lot management: An IoT platform for smart charging EV fleets, using realtime data and production forecasts. Renewable and Sustainable Energy Reviews, 189, 113845. Descargado de https://www.sciencedirect.com/science/article/pii/S1364032123007037 doi: 10 .1016/j.rser.2023.113845

Wei, W., Xu, L., Xu, J., Liu, C., Jiang, X., y Liao, K. (2022, noviembre). Coupled dispatching of regional integrated energy system under an electric-traffic environment considering user equilibrium theory. Energy Reports, 8, 8939–8952. Descargado de https://www .sciencedirect .com/science/article/pii/S2352484722012720 doi: 10 .1016/j .egyr .2022 .07.008

Descargas

Publicado

2024-06-30

Cómo citar

Morejón-Monteros, P., Banegas-Arias, D., & Ochoa-Correa, D. (2024). Impacto de la carga lenta de vehículos eléctricos en la calidad de energía de la red de distribución: Una prospección literaria. CEDAMAZ, 14(1), 69–79. https://doi.org/10.54753/cedamaz.v14i1.2220

Número

Sección

Ciencias exactas e ingenierías