Systematic literature review: Feasibility analysis for the detection and diagnosis of Covid-19, applying Artificial Intelligence (AI) models
DOI:
https://doi.org/10.54753/cedamaz.v11i2.1183Keywords:
Diagnostics, Covid-19, CNN, VGG16, Lung radiographs, X-rays.Abstract
Since the declaration of the health emergency caused by Covid-19 in March 2020, to date, there are approximately 219 million infected people, of which 4.5 million have died. In our country, it is estimated that there are 508 thousand confirmed cases and approximately 32 thousand deaths due to this disease. Despite the availability of verified methods to diagnose Covid-19, Polymerase Chain Reaction (PCR) or Real Time-PCR (RT-PCR) tests tend to generate false positives and negatives between 30\% and 40\%. Therefore, helping traditional methods to make an accurate clinical diagnosis, using lung radiographs as input data, represents a radical change in the detection of Covid-19, since it is a much more comfortable alternative for the patient and, more importantly, increases the level of accuracy while reducing false positive and negative rates. The present Systematic Literature Review (SLR), which is based on Barbara Kitchenham's methodology, seeks to support the creation of a model based on Convolutional Neural Network (CNN) architecture, capable of analyzing pulmonary radiographs for the diagnosis of Covid-19. As a result, it was possible to answer the three research questions posed, which served to delimit the present study, for which 41 related works (TR) were analyzed, which focused on different diagnostic methods based on Artificial Intelligence (AI), however 16 of these TR referred to the use of CNN for the diagnosis of Covid-19 through the analysis of computed tomography (CT) and pulmonary radiographs (X-rays), the latter being the most viable option to apply it in our environment, due to the availability of data. Furthermore, the use of resources by these methods is affordable, either locally using the Nvidia Graphics Processing Unit (GPU) and RAM memory greater than 8GB as a base, or using cloud processing using Google Colab.Metrics
References
Adly, A. S. A. S., Adly, A. S. A. S., y Adly, M. S. (2020). Approaches Based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: Scoping review. Journal of Medical Internet Research, 22(8). https://doi.org/10.2196/19104 DOI: https://doi.org/10.2196/19104
Al-Bawi, A., Al-Kaabi, K., Jeryo, M., y Al-Fatlawi, A. (2020). CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images. Research on Biomedical Engineering. https://doi.org/10.1007/s42600-020-00110-7 DOI: https://doi.org/10.1007/s42600-020-00110-7
Alsharif, W., y Qurashi, A. (2020). Effectiveness of COVID-19 diagnosis and management tools: A review. Radiography. https://doi.org/10.1016/j.radi.2020.09.010 DOI: https://doi.org/10.1016/j.radi.2020.09.010
Arias-Londoño, J. D., Gomez-Garcia, J. A., Moro-Velazquez, L., y Godino-Llorente, J. I. (2020). Artificial Intelligence applied to chest X-Ray images for the automatic detection of COVID-19. A thoughtful evaluation approach. DOI: https://doi.org/10.1109/ACCESS.2020.3044858
Born, J., Wiedemann, N., Cossio, M., Buhre, C., Brändle, G., Leidermann, K., Aujayeb, A., Moor, M., Rieck, B., y Borgwardt, K. (2021). Accelerating detection of lung pathologies with explainable ultrasound image analysis. Applied Sciences (Switzerland), 11(2), 1–23. https://doi.org/10.3390/app11020672 DOI: https://doi.org/10.3390/app11020672
Cai, W., Liu, T., Xue, X., Luo, G., Wang, X., Shen, Y., Fang, Q., Sheng, J., Chen, F., y Liang, T. (2020). CT Quantification and Machine-learning Models for Assessment of Disease Severity and Prognosis of COVID-19 Patients. Academic Radiology, 27(12), 1665–1678. https://doi.org/10.1016/j.acra.2020.09.004 DOI: https://doi.org/10.1016/j.acra.2020.09.004
Chakraborty, C., y Abougreen, A. (2018). Intelligent Internet of Things and Advanced Machine Learning Techniques for COVID-19. EAI Endorsed Transactions on Pervasive Health and Technology, 168505. https://doi.org/10.4108/eai.28-1-2021.168505 DOI: https://doi.org/10.4108/eai.28-1-2021.168505
Chattopadhyay, S., Dey, A., Singh, P. K., Geem, Z. W., y Sarkar, R. (2021). Covid-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer. Diagnostics, 11(2), 315. https://doi.org/10.3390/diagnostics11020315 DOI: https://doi.org/10.3390/diagnostics11020315
Dass, S D S, Meskaran, F., y Saeedi, M. (2020). Expert system for early diagnosis of covid-19. International Journal of Current Research and Review, 12(22), 162–165. https://doi.org/10.31782/IJCRR.2020.122227
Dass, Sharana Dharshikgan Suresh, Meskaran, F., y Saeedi, M. (2020). Expert system for early diagnosis of covid-19. International Journal of Current Research and Review, 12(22), 162–165. https://doi.org/10.31782/IJCRR.2020.122227 DOI: https://doi.org/10.31782/IJCRR.2020.122227
de Freitas Barbosa, V. A., Gomes, J. C., de Santana, M. A., Albuquerque, J. E. A., de Souza, R. G., de Souza, R. E., & dos Santos, W. P. (2021). Heg.IA: an intelligent system to support diagnosis of Covid-19 based on blood tests. Research on Biomedical Engineering. https://doi.org/10.1007/s42600-020-00112-5 DOI: https://doi.org/10.1007/s42600-020-00112-5
El-bana, S., Al-Kabbany, A., y Sharkas, M. (2020). A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans. PeerJ Computer Science, 6, e303. https://doi.org/10.7717/peerj-cs.303 DOI: https://doi.org/10.7717/peerj-cs.303
Elzeki, O. M., Abd Elfattah, M., Salem, H., Hassanien, A. E., & Shams, M. (2021). A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset. PeerJ Computer Science, 7, e364. https://doi.org/10.7717/peerj-cs.364 DOI: https://doi.org/10.7717/peerj-cs.364
Gao, T. (2020). Chest X-ray image analysis and classification for COVID-19 pneumonia detection using deep CNN. In medRxiv. medRxiv. https://doi.org/10.1101/2020.08.20.20178913 DOI: https://doi.org/10.21203/rs.3.rs-64537/v2
Gazzah, S., Bencharef, O., & Marrakech, F. (2020). A Survey on how computer vision can response to urgent need to contribute in COVID-19 pandemics. DOI: https://doi.org/10.1109/ISCV49265.2020.9204043
Gisby, J., Clarke, C. L., Medjeral-Thomas, N., Malik, T. H., Papadaki, A., Mortimer, P. M., Buang, N. B., Lewis, S., Pereira, M., Toulza, F., Fagnano, E., Mawhin, M. A., Dutton, E. E., Tapeng, L., Kirk, P., Behmoaras, J., Sandhu, E., McAdoo, S. P., Prendecki, M. F., … Peters, J. E. (2020). Longitudinal proteomic profiling of high-risk patients with COVID-19 reveals markers of severity and predictors of fatal disease. In medRxiv (Vol. 16, Issue 2, p. e0247176). medRxiv. https://doi.org/10.1101/2020.11.05.20223289' DOI: https://doi.org/10.7554/eLife.64827
Google-Noticias. (2021). Coronavirus (COVID-19).
Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., Spada, L. L., Mirmozafari, M., Dehghani, M., Sabet, A., Roshani, S., Roshani, S., Bayat-Makou, N., Mohamadzade, B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki, H., y Mohyuddin, W. (2020). Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access, 8, 109581–109595. https://doi.org/10.1109/ACCESS.2020.3001973 DOI: https://doi.org/10.1109/ACCESS.2020.3001973
Javor, D., Kaplan, H., Kaplan, A., Puchner, S. B., Krestan, C., y Baltzer, P. (2020). Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. European Journal of Radiology, 133. https://doi.org/10.1016/j.ejrad.2020.109402 DOI: https://doi.org/10.1016/j.ejrad.2020.109402
Kamil, M. Y. (2021). A deep learning framework to detect Covid-19 disease via chest X-ray and CT scan images. International Journal of Electrical and Computer Engineering, 11(1), 844–850. https://doi.org/10.11591/ijece.v11i1.pp844-850 DOI: https://doi.org/10.11591/ijece.v11i1.pp844-850
Kang, H., Xia, L., Yan, F., Wan, Z., Shi, F., Yuan, H., Jiang, H., Wu, D., Sui, H., Zhang, C., y Shen, D. (2020). Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. IEEE Transactions on Medical Imaging, 39(8), 2606–2614. https://doi.org/10.1109/TMI.2020.2992546 DOI: https://doi.org/10.1109/TMI.2020.2992546
Kavitha, K. V, Deshpande, S. R., Pandit, A. P., y Unnikrishnan, A. G. (2020). Application of tele-podiatry in diabetic foot management: A series of illustrative cases. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(6), 1991–1995. https://doi.org/10.1016/j.dsx.2020.10.009 DOI: https://doi.org/10.1016/j.dsx.2020.10.009
Kitchenham, B., y Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.
Kutlu, Y., y Cangozlu, Y. (2021). Detection of coronavirus disease (COVID-19) from X-ray images using deep convolutional neural networks. Natural and Engineering Sciences, 6(1), 60–74. https://doi.org/10.28978/nesciences.868087 DOI: https://doi.org/10.28978/nesciences.868087
Li, M. D., Little, B. P., Alkasab, T. K., Mendoza, D. P., Succi, M. D., Shepard, J.-A. O., Lev, M. H., y Kalpathy-Cramer, J. (2021). Multi-Radiologist User Study for Artificial Intelligence-Guided Grading of COVID-19 Lung Disease Severity on Chest Radiographs. Academic Radiology. https://doi.org/10.1016/j.acra.2021.01.016 DOI: https://doi.org/10.1016/j.acra.2021.01.016
Li, W. T., Ma, J., Shende, N., Castaneda, G., Chakladar, J., Tsai, J. C., Apostol, L., Honda, C. O., Xu, J., Wong, L. M., Zhang, T., Lee, A., Gnanasekar, A., Honda, T. K., Kuo, S. Z., Yu, M. A., Chang, E. Y., Rajasekaran, M. R., y Ongkeko, W. M. (2020). Using machine learning of clinical data to diagnose COVID-19: A systematic review and meta-analysis. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01266-z DOI: https://doi.org/10.1186/s12911-020-01266-z
Maghded, H. S., Ghafoor, K. Z., Sadiq, A. S., Curran, K., Rawat, D. B., y Rabie, K. (2020). A Novel AI-enabled Framework to Diagnose Coronavirus COVID-19 using Smartphone Embedded Sensors: Design Study. Proceedings - 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science, IRI 2020, 180–187. https://doi.org/10.1109/IRI49571.2020.00033 DOI: https://doi.org/10.1109/IRI49571.2020.00033
Meng, L., Dong, D., Li, L., Niu, M., Bai, Y., Wang, M., Qiu, X., Zha, Y., y Tian, J. (2020). A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study. IEEE Journal of Biomedical and Health Informatics, 24(12), 3576–3584. https://doi.org/10.1109/JBHI.2020.3034296 DOI: https://doi.org/10.1109/JBHI.2020.3034296
Mohammed, M. A., Abdulkareem, K. H., Al-Waisy, A. S., Mostafa, S. A., Al-Fahdawi, S., Dinar, A. M., Alhakami, W., Baz, A., Al-Mhiqani, M. N., Alhakami, H., Arbaiy, N., Maashi, M. S., Mutlag, A. A., Garcia-Zapirain, B., & De La Torre Diez, I. (2020). Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based on Entropy and TOPSIS Methods. IEEE Access, 8, 99115–99131. https://doi.org/10.1109/ACCESS.2020.2995597' DOI: https://doi.org/10.1109/ACCESS.2020.2995597
Nguyen, D. M. H., Nguyen, D. M., Vu, H., Nguyen, B. T., Nunnari, F., y Sonntag, D. (2020). An Attention Mechanism with Multiple Knowledge Sources for COVID-19 Detection from CT Images.
Nour, M., Cömert, Z., y Polat, K. (2020). A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization. Applied Soft Computing, 97. https://doi.org/10.1016/j.asoc.2020.106580 DOI: https://doi.org/10.1016/j.asoc.2020.106580
OMS. (2021). Enfermedad por el coronavirus (COVID-19): Vacunas. Onu.
OMS, O. M. de la S. (2020). Zoonosis.
Petticrew, M., y Roberts, H. (2008). Systematic Reviews in the Social Sciences: A Practical Guide. In Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470754887 DOI: https://doi.org/10.1002/9780470754887
Purohit, K., Kesarwani, A., Kisku, D. R., y Dalui, M. (2020). COVID-19 detection on chest X-Ray and CT Scan images using multi-image augmented deep learning model. In bioRxiv. bioRxiv. https://doi.org/10.1101/2020.07.15.205567 DOI: https://doi.org/10.1101/2020.07.15.205567
Qiu, J., Peng, S., Yin, J., Wang, J., Jiang, J., Li, Z., Song, H., & Zhang, W. (2021). A Radiomics Signature to Quantitatively Analyze COVID-19-Infected Pulmonary Lesions. Interdisciplinary Sciences: Computational Life Sciences. https://doi.org/10.1007/s12539-020-00410-7 DOI: https://doi.org/10.1007/s12539-020-00410-7
Ramajo, J., y Márquez, M. Á. (2008). Componentes espaciales en el modelo Shift-Share. Una aplicación al caso de las regiones peninsulares españolas. Estadística Española, 50(168), 247–272.
Review, S. (2020). Deep Learning in Detection and Diagnosis of Covid-19 using Radiology Modalities : A. 1–12. DOI: https://doi.org/10.1155/2021/9868517
Sahan, A. M., Al-Itbi, A. S., y Hameed, J. S. (2021). COVID-19 detection based on deep learning and artificial bee colony. 9(1), 29–36. DOI: https://doi.org/10.21533/pen.v9i1.1774
Sethy, P. K., Behera, S. K., Anitha, K., Pandey, C., y Khan, M. R. (2021). Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison. Journal of X-Ray Science and Technology, 1–14. https://doi.org/10.3233/xst-200784 DOI: https://doi.org/10.3233/XST-200784
Silahudin, D., Henderi, y Holidin, A. (2020). Model expert system for diagnosis of COVID-19 using naïve bayes classifier. IOP Conference Series: Materials Science and Engineering, 1007(1). https://doi.org/10.1088/1757-899X/1007/1/012067 DOI: https://doi.org/10.1088/1757-899X/1007/1/012067
Taresh, M., Zhu, N., y Ali Ali, T. A. (2020). Transfer learning to detect COVID-19 automatically from X-ray images, using convolutional neural networks. In medRxiv. medRxiv. https://doi.org/10.1101/2020.08.25.20182170 DOI: https://doi.org/10.1101/2020.08.25.20182170
Thepade, S. D., Bang, S. V., Chaudhari, P. R., y Dindorkar, M. R. (2020). Covid19 Identification from Chest X-ray Images Using Machine Learning Classifiers with GLCM Features. Electronic Letters on Computer Vision and Image Analysis, 19(3), 85–97. https://doi.org/10.5565/REV/ELCVIA.1277 DOI: https://doi.org/10.5565/rev/elcvia.1277
Yao, H, Zhang, N., Zhang, R., Duan, M., Xie, T., Pan, J., Peng, E., Huang, J., Zhang, Y., Xu, X., Xu, H., Zhou, F., y Wang, G. (2020). Severity Detection for the Coronavirus Disease 2019 (COVID-19) Patients Using a Machine Learning Model Based on the Blood and Urine Tests. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.00683
Yao, Haochen, Zhang, N., Zhang, R., Duan, M., Xie, T., Pan, J., Peng, E., Huang, J., Zhang, Y., Xu, X., Xu, H., Zhou, F., y Wang, G. (2020). Severity Detection for the Coronavirus Disease 2019 (COVID-19) Patients Using a Machine Learning Model Based on the Blood and Urine Tests. Frontiers in Cell and Developmental Biology, 8(10), 2776–2786. https://doi.org/10.3389/fcell.2020.00683 DOI: https://doi.org/10.3389/fcell.2020.00683
Yazdani, S., Minaee, S., Kafieh, R., Saeedizadeh, N., & Sonka, M. (2020). COVID CT-Net: Predicting Covid-19 from chest CT images using attentional convolutional network. ArXiv.
Zhang, D., Liu, X., Shao, M., Sun, Y., Lian, Q., y Zhang, H. (2021). The value of artificial intelligence and imaging diagnosis in the fight against COVID-19. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-021-01522-7 DOI: https://doi.org/10.1007/s00779-021-01522-7
Zoabi, Y., Deri-Rozov, S., y Shomron, N. (2021). Machine learning-based prediction of COVID-19 diagnosis based on symptoms. Npj Digital Medicine, 4(1). https://doi.org/10.1038/s41746-020-00372-6 DOI: https://doi.org/10.1038/s41746-020-00372-6
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
- After the scientific article is accepted for publication, the author agrees to transfer the rights of the first publication to the CEDAMAZ Journal, but the authors retain the copyright. The total or partial reproduction of the published texts is allowed as long as it is not for profit. When the total or partial reproduction of scientific articles accepted and published in the CEDAMAZ Journal is carried out, the complete source and the electronic address of the publication must be cited.
- Scientific articles accepted and published in the CEDAMAZ journal may be deposited by the authors in their entirety in any repository without commercial purposes.
- Authors should not distribute accepted scientific articles that have not yet been officially published by CEDAMAZ. Failure to comply with this rule will result in the rejection of the scientific article.
- The publication of your work will be simultaneously subject to the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)