Establishment of culture and maintenance protocols for Acanthamoeba castellanii

Authors

  • Daniela Román Universidad Nacional de Loja Grupo de Investigación Genética y Biología Molecular
  • Ana Claudia Samaniego-Villacís Universidad Nacional de Loja, Grupo de Investigación Genética y Biología Molecular
  • Adamary Vásquez-Tituana Universidad Nacional de Loja Grupo de Investigación Genética y Biología Molecular
  • Jorge Armijos Rivera Universidad Nacional de Loja Grupo de Investigación Genética y Biología Molecular

DOI:

https://doi.org/10.54753/cedamaz.v14i2.1837

Keywords:

Acanthamoeba castellanii, Escherichia coli, axenic cultures, PYG medium

Abstract

The genus Acanthamoeba encompasses various species of free-living amoebas, often isolated from different environmental sources such as water, soil, and air. Several species are known to cause infections and diseases in both humans and animals. Additionally, amoebas like Acanthamoeba castellanii are recognized as significant reservoirs of viruses, providing protection against adverse environmental conditions, especially nucleocytoplasmic large DNA viruses, also known as giant viruses. These viruses can be isolated by directly inoculating Acanthamoeba castellanii cultures with water samples from lacustrine bodies. This study focused on establishing laboratory cultivation protocols for Acanthamoeba castellanii ATCC 30010, aiming to better understand the response of these amoebas to the environment and their interactions with protozoan predators. We developed and implemented an approach to assess the viability of this genus in a liquid medium of protease-peptone-glucose and a non-nutritive solid medium, using Escherichia coli ATCC 25922 as a substrate. Incubation at specific temperatures and regular maintenance allowed for the establishment of axenic cultures of Acanthamoeba castellanii ATCC 30010. Through observation under an inverted microscope (10x and 40x), the growth of Acanthamoeba was verified, confirming the trophozoite state of the cells and the presence of the amoebal vacuole in both types of culture.

References

Anjum, M. F., Schmitt, H., Börjesson, S., Berendonk, T. U., Donner, E., Stehling, E. G., Pedersen, K. (2021). The potential of using e. coli as an indicator for the surveillance of antimicrobial resistance (amr) in the environment. Current Opinion in Microbiology, 64. doi:10.1016/j.mib.2021.09.011

Attariani, H., Turki, H., Shoja, S., Salahi-Moghaddam, A., Ghanbarnejad, A., y Shamseddin, J. (2020). Investigating the frequency of free-living amoeba in water resources with emphasis on acanthamoeba in bandar abbas city, hormozgan province, iran in 2019-2020. BMC Research Notes, 13(1). doi: 10.1186/s13104-020-05267-z

Bowers, B., y Olszewski, T. E. (1983). Acanthamoeba discriminates internally between digestible and indigestible particles. The Journal of Cell Biology, 97(2). doi:10.1083/jcb.97.2.317

Byers, T. J. (1979). Growth, reproduction, and differentiation in acanthamoeba. International Review of Cytology, 61. doi: 10.1016/S0074-7696(08)62000-8

Caumo, K. S., Monteiro, K. M., Ott, T. R., Maschio, V. J., Wagner, G., Ferreira, H. B., y Rott, M. B. (2014). Proteomic profiling of the infective trophozoite stage of acanthamoeba polyphaga. Acta Tropica, 140. doi:10.1016/j.actatropica.2014.08.009

de Souza Gonçalves, D., da Silva Ferreira, M., Liedke, S. C., Gomes, K. X., de Oliveira, G. A., Leão, P. E. L., Guimaraes, A. J. (2018). Extracellular vesicles and vesicle-free secretome of the protozoa acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence, 9(1). doi: 10.1080/21505594.2018.1451184

Goldblith, S. A., y Wang, D. I. C. (1967). Effect of microwaves on escherichia coli and bacillus subtilis. Applied Microbiology, 15(6). doi: 10.1128/aem.15.6.1371-1375.1967

Greub, G., y Raoult, D. (2004). Microorganisms resistant to free-living amoebae. Clinical Microbiology Reviews, 17(2). doi: 10.1128/CMR.17.2.413-433.2004

Khan, N. A. (2001). Pathogenicity, morphology, and differentiation of acanthamoeba. Current Microbiology, 43(6). doi: 10.1007/s002840010325

Khan, N. A. (2006). Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiology Reviews, 30(4). doi: 10.1111/j.1574-6976.2006.00023.x

Khan, N. A., Jarroll, E. L., y Paget, T. A. (2002). Molecular and physiological differentiation between pathogenic and nonpathogenic acanthamoeba. Current Microbiology, 45(3). doi: 10.1007/s00284-001-0108-3

Landell, M. F., Salton, J., Caumo, K., Broetto, L., y Rott, M. B. (2013). Isolation and genotyping of free-living environmental isolates of acanthamoeba spp. from bromeliads in southern brazil. Experimental Parasitology, 134(3). doi: 10.1016/j.exppara.2013.03.028

Lee, J., y Kaletunç, G. (2010). Inactivation of salmonella enteritidis strains by combination of high hydrostatic pressure and nisin. International Journal of Food Microbiology, 140(1). doi: 10.1016/j.ijfoodmicro.2010.02.010

Machado, T. B., de Aquino, I. L. M., y Abrahão, J. S. (2022). Isolation of giant viruses of acanthamoeba castellanii. Current Protocols, 2(5). doi: 10.1002/cpz1.455

Penland, R. L., y Wilhelmus, K. R. (1997). Comparison of axenic and monoxenic media for isolation of acantha moeba. Journal of Clinical Microbiology, 35(4). doi:10.1128/jcm.35.4.915-922.1997

Raymond Choo, K. K., Boyd, C., y Hitchcock, Y. (2006). The importance of proofs of security for key establishment protocols. formal analysis of jan-chen, yang-shen shieh, kim-huh-hwang-lee, lin-sun-hwang, and yeh-sun protocols. Computer Communications, 29(15). doi: 10.1016/j.comcom.2005.10.030

Siddiqui, R., y Khan, N. A. (2012). Biology and pathogenesis of acanthamoeba. Parasites and Vectors, 5(1). doi: 10.1186/1756-3305-5-6

Visvesvara, G. S. (1991). Classification of acanthamoeba. Reviews of Infectious Diseases, 13. doi: 10.1093/clind/13.Supplement_5.S369

Weisman, R. A. (1976). Differentiation in acanthamoeba castellanii. Annual Review of Microbiology, 30. doi: 10.1146/annurev.mi.30.100176.001201

Yousuf, F. A., Siddiqui, R., y Khan, N. A. (2013). Acanthamoeba castellanii of the t4 genotype is a potential environmental host for enterobacter aerogenes and aeromonas hydrophila. Parasites and Vectors, 6(1). doi:10.1186/1756-3305-6-169

Swiderski, Z. (2009). Acanthamoeba. biology and patho- ́genesis. Acta Parasitologica, 54(3). doi: 10 .2478/s11686-009-0036-0

Published

2024-12-31

How to Cite

Román, D., Samaniego-Villacís, A. C., Vásquez-Tituana, A. ., & Armijos Rivera, J. (2024). Establishment of culture and maintenance protocols for Acanthamoeba castellanii. CEDAMAZ, 14(2), 110–116. https://doi.org/10.54753/cedamaz.v14i2.1837

Issue

Section

Review Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.