¿Puede la tecnología disminuir la desigualdad? Evidencia empírica usando técnicas de datos de panel en 61 países durante 2000-2015

Autores/as

  • Gabriela Vargas Universidad Nacional de Loja
  • Patricia Guerrero-Riofrío Universidad Nacional de Loja

Palabras clave:

Tecnología, Desigualdad, Datos de panel

Resumen

El objetivo de esta investigación es examinar el impacto que tiene la tecnología en la desigualdad, a través de un modelo de mínimos cuadrados generalizados para 61 países a nivel mundial, durante el periodo 2000-2015. Los países fueron clasificados según su nivel de ingresos usando el método Atlas del Banco Mundial. Este método permite identificar qué tipo de relación hay entre ambas variables según el nivel de ingresos de cada país. El modelo se ha planteado considerando el trabajo de Asongu, Orim & Nting (2019), los autores explican la relación entre la desigualdad, la información tecnológica y la educación, sus resultados señalan una relación positiva entre la educación y la tecnología. Sin embargo, la desigualdad aumentaría por un exceso exagerado de la tecnología. Los resultados de esta investigación validan la hipótesis, “un aumento de la tecnología disminuye la desigualdad”, excepto para los países de Ingresos Altos. Las recomendaciones e implicaciones de políticas están orientadas al uso de las TIC en la educación, como una herramienta que vinculara hacia la innovación y la esperanza de un nuevo futuro para los países en desarrollo.

Citas

Afonso, O., Leite, R. (2010). Learning-by-doing, technologyadoption costs and wage inequality. Economic Modelling, 27(5), 1069–1078.

Amarante, V., & Colacce, M. (abril 2018) ¿Más o menos desigualdades? Una revisión sobre la desigualdad de los ingresos a nivel global, regional y nacional. Repositorio de la CEPAL.

Aït-Sahalia, Y., & Xiu, D. (2018). A Hausman test for the presence of market microstructure noise in high frequency data. Journal of Econometrics.

Asongu, S. A., Orim, S.-M. I., & Nting, R. T. (2019). Inequality, information technology and inclusive education in sub-Saharan Africa. Technological Forecasting and Social Change, 146, 380–389.

Asteriou, D., Dimelis, S. &Moudatsou, A. (2014). Globalization and income inequality: A panel data econometric approach for the EU27 countries. EconomicModelling.

Banco Mundial. (10 de abril 2018). La adopción de tecnología es clave para los empleos del mañana en América Latina y el Caribe.

Banco Mundial. (4 de octubre 2018). The Jobs of tomorrow: Technology, Productivity, and Prosperity in Latin America and the Caribbean.

BancoMundial. (8 de abril 2019). Desarrollo digital.

Banco Mundial. (2019). Informe de los objetivos de Desarrollo Sostenible.

Banco Mundial. (30 de enero 2018). Según un informe del Banco Mundial, la riqueza del mundo ha aumentado, pero persisten las desigualdades. Ciudad deWashington.

Bárcena, A. (2018). La ineficiencia de la desigualdad. Secretaría Ejecutiva. Comisión Económica para América Latina y el Caribe. Naciones Unidas.

Barua, A., & Ghosh, P. (2017). Factor specificity andwage inequality in a developing economy: The role of technology and trade in Indian manufacturing. International Reviewof Economics & Finance, 52, 77–90.

Bogliacino, F. (2014). A critical review of the technology-inequality debate. Suma de Negocios, 5(12), 124–135.

Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The review of economic studies, 47(1), 239-253.

Cheng, T., Gao, J., & Yan, Y. (2019). Regime switching panel data models with interactive fixed effects. Economics Letters, 177, 47–51.

Fang, C., Huang, L., & Wang, M. (2008). Technology spillover and wage inequality. EconomicModelling, 25(1), 137–147.

Fremstad, A., & Paul,M. (2019). The Impact of a Carbon Tax on Inequality. Ecological Economics, 163, 88–97.

Frydman, C., & Papanikolaou, D. (2018). In search of ideas: Technological innovation and executive pay inequality. Journal of Financial Economics.

Godoy, J. (2018). Urbanización e industrialización en Ecuador. Revista Vista Económica, Vol.4, 46-57.

Grupo Banco Mundial. (2019). La naturaleza cambiante del trabajo.

Hall, S. G., & Guo, Q. (2012). Spatial panel data analysis with feasible GLS techniques: An application to the Chinese real exchange rate. EconomicModelling, 29(1), 41–47.

Henningsen, A., & Henningsen, G. (2019). Analysis of Panel Data Using R. Panel Data Econometrics, 345–396.

Herzberg-Druker, E., & Stier, H. (2019). Family matters: The contribution of households’ educational and employment composition to income inequality. Social Science Research.

Huang, B., Lee, T.-H., & Ullah, A. (2019). Combined Estimation of Semiparametric Panel DataModels. Econometrics and Statistics.

Islam, M. R., & McGillivray, M. (2019). Wealth inequality, governance and economic growth. EconomicModelling.

Kristalina, K. (27 de junio 2018) el uso de la tecnología funciona para solucionar los problemas de los pobres; simplemente tenemos que hacerlo bien. BancoMundial Blogs.

Kudasheva, T., Kunitsa, S., & Mukhamediyev, B. (2015). Effects ofAccess to Education and Information-communication Technology on Income Inequality In Kazakhstan. Procedia - Social and Behavioral

Sciences, 191, 940–947.

Love-Koh, J., Cookson, R., Gutacker, N., Patton, T., & Griffin, S. (2019). Aggregate Distributional Cost-Effectiveness Analysis of

Health Technologies. Value in Health, 22(5), 518–526.

Magalhães, M., & Hellström, C. (2013). Technology diffusion and its effects on social inequalities. Journal of Macroeconomics, 37, 299–313.

Mehic, A. (2018). Industrial employment and income inequality: Evidence from panel data. Structural Change and Economic Dynamics, 45, 84–93.

Mirza, M.U., Richter, A., vanNes, E. H., & Scheffer, M. (2019). Technology driven inequality leads to poverty and resource depletion. Ecological Economics, 160, 215–226.

Mota, R. P., & Cunha-e-Sá, M. A. (2019). The Role of Technological Progress in Testing Adjusted Net Savings: Evidence fromOECD Countries. Ecological Economics, 164,

Okui, R., & Yanagi, T. (2019). Panel data analysis with heterogeneous dynamics. Journal of Econometrics.

Olaya, E. (2017). Efectos del gasto en investigación y desarrollo en el ingreso de los establecimientos de Ecuador. Revista Vista Económica, Vol.3, 7-18.

Oxfam international. (2019a). Bienestar Público o Beneficio Privado.

.

Popescu, I. (2018). Free functional inequalities on the circle. Advances inMathematics, 330, 1101–1159.

Sánchez-Antolín, P., Ramos, F. J., & Blanco-García, M. (2014). Inequality in Education and New Challenges in the Use of Information and Communication Technologies. Procedia - Social and Behavioral Sciences, 116, 1519–1522.

Sinha, A., Sengupta, T., & Alvarado, R. (2020). Interplay between technological innovation and environmental quality: formulating the SDG policies for next 11 economies. Journal of Cleaner Production, 242, 118549.

Uzar, U., & Eyuboglu, K. (2019). The nexus between income inequality and CO2 emissions in Turkey. Journal of Cleaner Production.

Van Reenen, J. (2011). Wage inequality, technology and trade: 21st century evidence. Labour Economics, 18(6), 730–741.

Wooldridge, J. M. (2002). Inverse probability weighted Mestimators for sample selection, attrition, and stratification. Portuguese Economic Journal, 1(2), 117-139.

World Economic Forum on Africa. (2 de octubre 2018). Capital humano y tecnología: la construcción de un nuevo contrato social. Recuperado de https://www.bancomundial.org/es/news/speech/2018/10/02/preannual- meetings-positioning-speech.

World inequality Database. (2019). Inequality . Recuperado de https://wid.world/es/pagina-de-inicio/.

World inequality Database. (2018). World inequality report 2018. Recuperado de http://wir2018.wid.world/.

World inequality Database. (7 de Agosto 2019). Update of WDI.World Macroeconomic aggregates to 2018. Recuperado de https://wid.world/es/news-article/update-of-wid-worldmacroeconomic- aggregates-to-2018-4/.

World Economic Forum on Africa. (22 de enero 2019). La verdad impactante sobre la desigualdad hoy. Recuperado de

https://es.weforum.org/agenda/2019/01/la-verdad-impactantesobre- la-desigualdad-hoy/.

Zhang, Y.,Wang, H. J., & Zhu, Z. (2019). Quantile-regression-based clustering for panel data. Journal of Econometrics.

Zeira, J. (2007). Wage inequality, technology, and trade. Journal of Economic Theory, 137(1), 79–103.

Zhou, H., He, S., Cai, Y., Wang, M., & Su, S. (2019). Social inequalities in neighborhood visual walkability: Using Street View imagery and deep learning technologies to facilitate healthy city planning. Sustainable Cities and Society, 101605.

Descargas

Publicado

2020-07-16